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Abstract 

This paper describes and demonstrates a stochastic parafoil guidance system which couples 

uncertainty propagation with optimal control to protect against wind and parameter uncertainty in the 

presence of impact area obstacles.  The algorithm uses real-time Monte Carlo simulation performed 

on a graphics processing unit (GPU) to evaluate robustness of candidate trajectories in terms of 

delivery accuracy, obstacle avoidance, and other considerations. Prior theoretical developments are 

built upon in this paper in order to explore performance of the stochastic guidance law, particularly 

with respect to obstacle avoidance. Development and testing of the technique is summarized in three 

stages. First, through a comprehensive set of simulation results, key implementation aspects of the 

stochastic algorithm are explored including tradeoffs between the number of candidate trajectories 

considered, algorithm runtime, and overall guidance performance. Secondly, flight test results are 

presented comparing the proposed stochastic guidance algorithm with a standard deterministic one. 

Finally, techniques are developed so that the demonstrated GPU-based terminal guidance algorithm 

and hardware can be easily integrated with standard production autopilot systems.  Overall, simulation 

and flight test results demonstrate that the stochastic guidance scheme provides a more robust 

approach to obstacle avoidance while largely maintaining delivery accuracy. 
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Nomenclature 

/c Ta     Acceleration of the parafoil mass center with respect to the inertial frame 

Ci    Dimensionless parafoil aerodynamic coefficients 

D    Distance of the turn initial point with respect to the target 

ei    Estimated mean miss distance for trajectory candidate i 

I    Inertia matrix of the parafoil-payload vehicle about the mass center 

,
AP AS

F F   Aerodynamic forces on the parafoil and payload 

AM
F    Force on the parafoil-payload due to apparent mass effects 

,
WP WS

F F   Weight forces on the parafoil and payload 
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iT, jT, kT    North-East-Down reference frame unit vectors 

Ji    Cost associated with trajectory candidate i 

kg    Cost function weight for obstacle avoidance 

L    Distance to target along target line 

, ,
AP AS AM

M M M  Moments from aerodynamics of the parafoil, payload, and apparent mass moments, all 

about the mass center 

M    Number of possible yaw rate values used in discretization 

N    Number of possible ψF values used in discretization 

pi    Estimated probability of obstacle impact for trajectory candidate i 

R    Final turn radius 

Rs    Number of candidate trajectories selection for Monte Carlo evaluation 

s    Parafoil 6DOF state vector 

TIP    Turn initiation point 

t0    Time final turn begins 

t1    Time final approach begins 

t2    Time of predicted impact 

Tapp    Final approach time 

hV , zV     Parafoil horizontal airspeed and vertical speed 

Wx, Wy    Target frame wind speed components 

x, y, z    Parafoil inertial positions in the North-East-Down frame 

,x y     Parafoil inertial velocity components in the North-East-Down frame 

ψF    Final approach angle  

ψ    Parafoil Euler yaw angle  

ψmax    Maximum parafoil yaw rate  

𝜔𝐵/𝑇    Angular velocity of the parafoil-payload vehicle with respect to inertial frame 

 

1. Introduction 

Over the past five decades, significant effort has focused on development of computationally efficient 

control algorithms to enable real-time execution on embedded microprocessors for robotic systems.  Although 

computational performance of embedded devices continues to rapidly increase, the emphasis on algorithm 

computational efficiency remains a key characteristic of modern control design [1-3].  For deterministic systems at 

least, a variety of linear and nonlinear control algorithms now exist that offer suitable tradeoffs between 

computational complexity and performance [4]. However, current control algorithms are largely serial in nature. 

That is in the classical control paradigm, a sequence of serial steps is used to arrive at desired control inputs from 

feedback measurements 

Systems subject to large dynamic uncertainty, i.e. stochastic systems, provide a unique challenge in terms 

of computational complexity because some element of uncertainty propagation must be inherent in the control 

formulation to ensure either robustness or optimality.  In general, continuous systems subject to stochastic 

uncertainty do not admit closed-form or exact optimal control solutions and the certainty-equivalence principal does 

not hold [4].  The exception is linear systems subject to Gaussian disturbances, in which the finite horizon optimal 
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control problem may be solved exactly using dynamic programming recursion (linear quadratic Gaussian, or LQG, 

control).  In the more general case of continuous nonlinear systems or non-Gaussian systems, new control 

formulations are needed that avoid the “curse of dimensionality” issues associated with dynamic programming 

techniques [5].  In such cases, new advancements in high-throughput embedded computing may provide an avenue 

to practical implementation of optimal control for stochastic systems. 

The thesis of this paper is that flexible optimal control algorithms incorporating nonlinear, non-Gaussian 

uncertainty propagation may be practically realizable for robotic systems through proper division of computational 

effort across a heterogeneous set of onboard embedded computing devices.  By coupling standard microprocessors 

with emerging massively-parallel computing devices, uncertainty propagation and optimization may be performed in 

real-time without requiring restrictive assumptions of linear dynamics or Gaussian uncertainty.  In this new class of 

optimal controllers, uncertainty propagation may be performed through real-time Monte Carlo simulation, and an 

optimal control action is determined by minimizing a cost function conditioned on the resulting probability density.  

Recent work by Ilg et al. [6] demonstrated the feasibility of executing real-time Monte Carlo simulations of air 

vehicle trajectories on graphics processing units (GPU’s) given their data-parallel execution model. 

The work described here explores this heterogeneous computing approach to stochastic control in the 

context of autonomous parafoil guidance and control.  Parafoils are a type of controllable parachute used to deliver 

cargo and supplies to a specific target via release from an aircraft.  In general, parafoil landing accuracy is adversely 

affected by unknown wind disturbances, which provide perturbations to the system on the same order as the vehicle 

airspeed.  Largely as a result of wind uncertainty, current parafoil landing accuracy is limited to approximately 100 

m, which is unsuitable for landing in environments with complex terrain or obstacles near the target [7,8].  

Numerous authors have explored a variety of optimal parafoil guidance strategies including model predictive control 

[9], direct glide slope control [10], and parametric path optimization [11-13].  Gimadieva [14] and Rademacher et al. 

[15] have proposed alternative optimal control strategies, the latter using modified Dubins paths.  A key limitation of 

these solutions is that they are based on deterministic knowledge of the wind and thus may not be robust in cases of 

unknown winds or wind shifts during terminal flight. A deterministic solution may be appropriate based on the 

known mean wind; however, it could be extremely sensitive to variations in the wind, with a small change resulting 

in potential mission failure. For example, using a deterministic solution the optimal impact may occur close to an 

obstacle but still be considered acceptable.  However, in the presence of uncertain winds, many potential trajectories 

may actually impact the obstacle. In contrast, a probabilistic solution would determine potential trajectory sensitivity 

to wind variation and as a result select a solution which reduces the probability of hitting the obstacle by shaping the 

terminal approach appropriately, even at the expense of slight reductions in landing accuracy. 

Recently, the authors proposed a new method for stochastic parafoil terminal guidance in which Monte 

Carlo simulation is performed in real-time on a GPU co-processor [16,17].  The GPU-derived Monte Carlo 

predictions are used to minimize a cost function that penalizes both impact point accuracy and other parameters such 

as drop zone constraint violations.  Preliminary simulation results in [16] and [17] showed the ability of this 

guidance formulation to reshape impact dispersion patterns around arbitrary ground obstacles and terrain.  This 

paper builds upon the theoretical foundations outlined in [16-17] to address various tradeoffs in guidance system 

performance and explore practical aspects of implementation.  Specifically, the contributions of this paper include a 

discussion of the practical aspects of algorithm implementation on a flight vehicle, flight test results demonstrating 

performance of the stochastic guidance law in comparison to a standard deterministic guidance scheme, and an 

exploration of the effects of various guidance system parameters (including cost function weightings, optimization 

grid size, and the number of candidate trajectories considered). 
 

In the paper, the parafoil guidance problem is first formulated building from prior theoretical results. Next, 

a description of the flight test vehicle is provided, and the guidance package is described including discussion of 

workload distribution across the autopilot and GPU co-processor.  Through a comprehensive set of simulation 

results, performance of the stochastic guidance algorithm as a function of various parameters is demonstrated, 

including cost function values, resolution of the optimization grid, and the number of candidate trajectories selected 

for uncertainty quantification.  Experimental results are then shown comparing performance of the proposed 

stochastic guidance algorithm with a standard deterministic scheme.  Experimental dispersion results demonstrate 

the practical utility of the proposed guidance scheme in terms of obstacle avoidance and robustness to wind 

uncertainty in a realistic environment.  Finally, techniques are developed and presented so that the demonstrated 

GPU-based terminal guidance algorithm and hardware can be easily integrated with standard production autopilot 

systems. In addition, a short description of the newest hardware available is provided.  
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2. Parafoil Terminal Guidance 

2.1.  Deterministic Guidance 

Parafoil guidance is typically composed of three phases: an energy management phase, in which the 

parafoil dissipates altitude (usually by tracking some sort of square or circular pattern), a homing phase, in which the 

parafoil proceeds to the target area, and a terminal guidance phase which consists of final maneuvers such that the 

parafoil arrives at the target and the ground simultaneously.  Terminal guidance is initiated at the so-called turn 

initiation point (TIP) as depicted in Figure 1, where iT, and jT are axes of the standard North-East-Down target 

reference frame.  Note that in general it is desirable to land directly into the wind to minimize ground velocity at 

impact. 

Upon arrival at the TIP, a final trajectory must be computed in the form of a turning maneuver that faces 

the parafoil into the wind.  At the TIP (time t0), the parafoil is located a distance D upwind of the target and a 

distance 2R to the left of the target, where R is the turn radius.  The terminal path is constrained such that at a time 

Tapp prior to ground impact, denoted as t1, the parafoil must proceed on a straight line path to the target with yaw 

angle ψF.  This is deemed the final approach.  In practical scenarios, R, Tapp, and ψF are specified, wind components 

Wx and Wy are estimated, and altitude z and distance L are measured.  The terminal guidance problem is then to find 

a suitable distance D at which to initiate the turn such that the parafoil arrives at the target at t2 on a heading of ψF at 

zero altitude above the ground.  In [16], the authors provided a closed form solution to this open-loop planning 

problem by assuming a constant rate turn �̇�, a nearly constant vehicle descent rate Vz, a constant horizontal airspeed 

Vh, and a turn rate slow enough such that roll and sideslip angles can be ignored.  In this case parafoil motion 

reduces to a kinematic model and a closed-form solution for ψ(t) can be found.  First, using the constant turn rate 

assumption the turn rate solution is a linear function of time according to, 

 

 𝜓(𝑡) = 𝑡(𝜓𝐹 − 𝜓0) (𝑡1 − 𝑡0)⁄  (1) 

Then, integrating the horizontal velocity components along iT and jT from t0 to t2 and solving for the final turn time 

t1 yields, 

 𝑡1 = 𝑡0 +
𝜓𝐹(2𝑅−(𝑊𝑦+𝑉ℎsin 𝜓𝐹)𝑇𝑎𝑝𝑝)

𝑊𝑦𝜓𝐹+𝑉ℎ(1−cos 𝜓𝐹)
 (2) 

Finally, by integrating velocity components along iT and kT from t0 to t2 a solution for the downrange distance of the 

turn initiation point, D, can be found according to, 

 𝐷 = −𝑊𝑥(𝑡1 − 𝑡0) −
𝑉ℎ

�̇�
sin 𝜓𝐹 −

(𝑊𝑥+𝑉ℎ cos 𝜓𝐹)(𝑊𝑥+𝑉ℎ)

𝑉ℎ(1−cos 𝜓𝐹)
(

−𝑧

𝑉𝑧
− (𝑡1 − 𝑡0) −

𝐿−𝑊𝑥(𝑡1−𝑡0)−
𝑉ℎ
�̇�

sin 𝜓𝐹

𝑊𝑥+𝑉ℎ
)                    (3) 

Equations (1)-(3) form the deterministic, open-loop trajectory planner used for the remainder of the paper.  

Additional details regarding the derivation of this closed form solution can be found in [16] and have been omitted 

here for brevity. 
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Figure 1.  Terminal guidance geometry.                                 Figure 2. Final turn guidance updates. 

  

 

The kinematic solution described above is an open-loop planner which yields an optimal turn rate and 

distance D defining the TIP.  Clearly the solution is optimal as long as winds are constant during the final turn.  In 

practical scenarios, gusts or wind shifts during the final turn often cause the parafoil position (x0, y0, z0) and 

orientation ψ0 at a given time to vary from the states which satisfied the initial terminal guidance problem.  In this 

case, depicted in Figure 2, a new guidance solution in the form of an updated �̇� and ψF must be computed.  This 

boundary value problem may be formulated as follows: given the parafoil location (x0, y0, z0) at time t0 with yaw 

angle ψ0, find �̇� and ψF such that the parafoil will land at the target in the presence of winds Wx and Wy.  Given the 

constraints of this problem there is at most one and possibly no exact solution.  If in fact no solution exists, it may be 

reformulated as a nonlinear optimization problem in which an optimal solution for �̇� and ψF is computed given 

dynamic motion constraints.  This optimization problem is described as follows: 

 

Given x0, y0, z0, ψ0, t0, and estimates of Wx, Wy, find �̇� and ψF that minimizes 

 𝐽𝑖 = 𝑓(𝐬, 𝑡) (4) 

subject to 

                          

𝑥2 = 𝑥0 + 𝑊𝑥(𝑡1 − 𝑡0) +
𝑉ℎ

�̇�
(sin 𝜓𝐹 − sin 𝜓0) + (𝑡2 − 𝑡1)(𝑊𝑥 + 𝑉ℎ cos 𝜓𝐹) 

𝑦2 = 𝑦0 + 𝑊𝑦(𝑡1 − 𝑡0) −
𝑉ℎ

�̇�
(cos 𝜓𝐹 − cos 𝜓0) + (𝑡2 − 𝑡1)(𝑊𝑦 + 𝑉ℎ sin 𝜓𝐹)

 𝑡2 =
−𝑧0 

𝑉𝑧
+ 𝑡0 

 𝑡1 =
𝜓𝐹−𝜓0

�̇�
+ 𝑡0

 (5) 

 

The constraints outlined in equation (5) result from the kinematic model approximation and the constant turn rate 

assumption.  In general, the cost function in (4) can represent any desired function of time and parafoil states (s), and 

thus the problem described by (4)-(5) is not guaranteed to be convex.  Numerical solutions to this problem suffer 

from well-known issues of any gradient based iterative solver such as convergence, solution speed, and robustness.  

Nevertheless, given a set of candidate trajectory shapes (�̇�, ψF), equations (4) and (5) may be used to rapidly 

evaluate candidate paths and select a promising set for further evaluation as described in the next section. 

 

2.2.  Stochastic GPU-Based Guidance  

 While the optimization problem given in (4)-(5) provides a mechanism for feedback planning in the case of 

wind changes or large tracking error, if a solution can be found it is still only valid in the updated wind conditions.  
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A potential solution may be appropriate based on the known mean winds; however, it could be extremely sensitive 

to variations in the wind, with a small change resulting in potentially a large increase in the cost function.  Consider 

the case depicted in Figure 3, where an airdrop target is located within the confines of a designated area represented 

by walls around an operating base.  In this case, landing point accuracy may be far less important than ensuring that 

the parafoil lands somewhere within the walled boundaries given future wind disturbances.  The deterministic 

guidance formulation in (4)-(5) cannot capture this goal since it evaluates the cost function based on a single, point 

trajectory prediction.  Instead, the guidance algorithm must be able to compute the vehicle response to potential 

stochastic perturbations and derive a guidance trajectory that, while perhaps landing farther from the target, will at 

least be robust to wind uncertainty. 

 

 

 

Fig. 3. Aerial view of a military forward operating base. 

 

Uncertainty propagation for a dynamic system can be performed in a number of ways from Monte Carlo 

simulation [18] to direct methods such as the Fokker-Planck-Kolmogorov (FPK) equation [19].  In this case, the 

point mass model employed in equations (4) and (5) may be insufficient to capture gust response of the vehicle, 

especially over long distances.  Due to its flexibility in handling nonlinear dynamics and non-Gaussian uncertainty, 

Monte Carlo simulation is chosen to perform uncertainty propagation in real-time for the nonlinear closed-loop 

system to evaluate robustness of each trajectory candidate.  It has been shown [6] that Monte Carlo simulations 

executed on GPU’s exhibit 1-2 orders of magnitude less runtime than serial-based codes on a CPU architecture, 

leading to the possibility that such simulations can be run in real-time.  Experimental results shown here 

demonstrate that Monte Carlo is indeed a viable real-time method for guidance architectures that include an 

embedded GPU. 

Stochastic parafoil guidance proceeds in three separate stages, as shown in Figure 4.  First, a complete set 

of constant-rate turn trajectory candidates is generated by discretizing �̇� into M possible values within  

 
max max

,  , where 
max

  is the parafoil’s maximum desired turn rate.  Likewise, ψF is discretized into N values 

between 0 and 2π.  Given state and wind estimates, these M N trajectory candidates are evaluated using the 

kinematic model in (5), and a cost for each trajectory candidate is computed according to (4).  In many cases the cost 

function used at this stage may be simply the predicted miss distance.  These trajectory candidates are then ranked 

according to their cost, and the best Rs trajectories are selected for further Monte Carlo evaluation.  This step is 

referred to as prescreening, and is used to prune trajectory candidates that do not appear promising. 
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Fig. 4. GPU-based guidance algorithm. 

 

 
Monte Carlo simulation is performed for each of the Rs trajectory candidates using a closed-loop, 6-degree-

of-freedom (6DOF) parafoil model with a model predictive controller that tracks the candidate trajectory.  The 

6DOF parafoil model is briefly described in the next section, with additional details of the 6DOF and the model 

predictive controller available in references [20] and [16] respectively.  Note that due to the differences in fidelity 

between the kinematic model (used for prescreening) and the 6DOF model (used for Monte Carlo evaluation), the 

value Rs must be selected appropriately with respect to the grid resolution M and N so that an adequate number of 

trajectories are evaluated.  This tradeoff is explored later in the paper.  Within each Monte Carlo simulation, the 

steady wind components Wx and Wy are randomized according to a Gaussian distribution with mean equal to the 

nominal estimated wind, and variance provided by an on-board wind estimator.  This Gaussian error model may be 

viewed as quantifying the effects of uncertainty either in steady-state wind estimates, or due to sudden wind gusts 

(where the gust is assumed to act at the time that the guidance algorithm is calculated).  The result is a dispersion 

pattern for each of the Rs trajectory candidates.  The final step is to select a robust trajectory using a cost function 

that balances overall miss distance e with other considerations, such as impact velocity or probability of obstacle 

impact (as described in [16,17]).  Here, consider a cost function of the form, 

 

 
i i g i

J e k p   (6) 

 

where Ji is the cost associated with trajectory candidate i, ei is the mean miss distance, pi represents the probability 

of landing inside a constraint (obstacle) region, and kg is a user-defined gain that weighs the dual goals of accuracy 

and obstacle avoidance.  Note that the obstacle region can be any user-defined polygon.  The robust trajectory 

candidate is then selected as the one yielding minimum cost.  This trajectory is used during terminal guidance for 

tracking within the control algorithm and can be continually updated during terminal maneuvers by repeating this 

trajectory planning process.  Note that feedback planning, in which guidance updates are regularly recomputed, is 

critical in compensating for error in the 6DOF model, trajectory tracking error, and wind perturbations.   

The strengths of the proposed algorithm are two-fold. First, computation time and controller design is 

largely independent of drop zone features, allowing guidance solutions to be conditioned easily on complex 

obstacles or terrain.  Second, a robust trajectory is selected based on fully nonlinear uncertainty propagation which 

includes a model of closed-loop system performance.  Further details regarding the theoretical foundations of the 

above GPU-based guidance algorithm, and preliminary simulation results involving obstacles and complex terrain, 

may be found in [16] and [17].  Furthermore, simulation results comparing the standard deterministic guidance 

algorithm with the proposed stochastic guidance scheme were provided previously in [16].  In this paper, the effects 

of various guidance system parameters are explored through simulation for an example scenario and practical 

implementation aspects are discussed.  Experimental performance is then established through a set of flight tests 

using a small autonomous parafoil system. 

 

2.3  Parafoil 6DOF Model 

 A brief description of the parafoil 6DOF model used in the stochastic guidance algorithm is presented here.  

The 6DOF model is formulated by considering the parafoil and payload to be a single rigid body, neglecting 

aeroelastic effects of the canopy and payload swinging/rotational motion with respect to the canopy.  Equations (7) 

and (8) describe the translational and rotational dynamics of the parafoil respectively, where mp and ms denote the 

parafoil and payload mass: 
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    /
/

c T AP AS AM WP WS p s
m m    a F F F F + F  (7) 

 

  1

/B T AP AS AM


 ω = I M M M  (8) 

 

Note that in the above equations, /c Ta  denotes the acceleration of the parafoil-payload center of mass with 

respect to the inertial frame T, while /B Tω  denotes the inertial frame time derivative of the body angular velocity 

with respect to frame T.  The force and moment contributions in (7) and (8) include aerodynamics from the parafoil 

(AP) and payload (AS), weight of the parafoil (WP) and payload (WS), and apparent mass effects (AM).  Note that the 

control forces and moments due to brake deflections are included in the aerodynamic force and moment 

calculations.  While higher-fidelity parafoil models have been proposed [20], the 6DOF model used here is judged to 

be a reasonable compromise between complexity and accuracy for use in guidance calculations, especially since 

other sources of uncertainty such as winds have a significant effect on parafoil motion and are usually not known 

precisely.  A detailed description of the above model is omitted here for brevity but can be found in Reference [20]. 

 

 

3. Experimental System 

 To evaluate experimental performance of the proposed guidance algorithm, a parafoil-payload system was 

constructed and equipped with an electronics package containing an embedded GPU.  This section details design 

and construction of the guidance electronics and provides a brief description of the flight system. 

 

3.1.  Guidance Electronics with an Embedded GPU 

 Figure 5 shows a diagram of the electronics package along with the data flow between each processing 

element.  Typically, GPU processors are combined with a CPU “host” processor for tasking purposes.  In this case, 

the SECO CUDA-on-ARM development board was selected, which includes an NVIDIA Tegra3 quad-core ARM 

processor coupled with a Quadro 1000M 96-core GPU [21].  The ARM processor is coupled to a standard MEMS 

autopilot via a serial interface.  During each trajectory update, the autopilot sends the 6DOF state and wind estimates 

to the ARM processor, which performs the initial trajectory prescreening steps.  Following prescreening and 

selection of Rs trajectory candidates, the ARM tasks the GPU to perform Monte Carlo simulations.  Once all Monte 

Carlo simulations are complete, the ARM computes the cost function (6) for each trajectory candidate and passes the 

optimal trajectory to the autopilot for inner loop control.  The advantage of this setup is that the entire system is 

modular, meaning the autopilot or GPU co-processor components can be replaced or updated without affecting other 

components.  Further note that trajectory optimization is performed completely independently of the inner-loop 

autopilot, meaning that the latency of guidance optimization calculations do not affect inner-loop control and 

tracking, since the autopilot continues to track the previous trajectory while a new one is being computed.  A picture 

of the guidance electronics package implemented here is shown in Figure 6.  Including the autopilot processor, this 

embedded electronics package has over 100 cores with a total mass of under 1 kg including batteries. 
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Fig. 5.  Flight Control Architecture Design. 

 

 

 
 

Fig. 6. Flight System Electronics. 

 

  

In general, it is desired that GPU-based trajectory optimization exhibit latencies of less than about 3 sec so 

guidance updates can be computed in a feedback manner during terminal guidance [16].  Since Monte Carlo 

simulations are based on 6DOF trajectory propagation, runtime is a function of altitude.  By appropriately selecting 

the number of trajectory candidates Rs considered for Monte Carlo evaluation, as well as the number of trajectories 

per Monte Carlo simulation, the desired runtime may be achieved.  However, selection of Rs, as well as optimization 

grid parameters N and M, significantly affect accuracy and obstacle avoidance performance as well.  Thus Rs cannot 

be selected strictly based on runtime limitations.  Instead, simulation results for an example scenario presented in the 

next section are used to obtain a value of Rs that provides a proper tradeoff between runtime, accuracy, and obstacle 

avoidance. 
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3.2.  Flight Test Vehicle 

 A small parafoil-payload vehicle was constructed with a canopy span of 2.1 m and mass of 2.72 kg.  In 

power-off glide, the system had a nominal forward flight speed of 7.51 m/s, steady-state descent rate of 4.1 m/s, and 

maximum turn rate of 
max

30  deg/s.  For a given test sequence, the powered system was hand-launched and flown 

in a climbing pattern to approximately 150 m.  At altitude, the motor was turned off and autonomous terminal 

guidance was activated.  A picture of the parafoil-payload vehicle is shown in Figure 7, and a diagram of the flight 

test pattern is shown in Figure 8 using an aerial photo. 

  

 

       

Fig. 7. Photo of Experimental Parafoil-Payload System with Embedded GPU (located in brown box on payload). 

 

 

Fig. 8.  Aerial Photo of the Test Area and Flight Test Procedure. 
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identification is an important aspect of implementation.  A specialized parameter estimation method for parafoils 
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play a significant role in the flight dynamics of the system.  These important estimated parameters are listed in Table 

1 for this aircraft. 

 

Table 1.  Identified Aerodynamic Coefficients for Experimental System. 

Parameter Description Value (non-dimensional) 

CD0 Drag at zero angle of attack 0.15 

CL0 Lift at zero angle of attack 0.15 

CYβ Side force due to sideslip angle -0.15 

CNδa Brake control effectiveness 0.0024 

CLδa Change in lift due to brake deflection -0.0005 

CNr Yaw rate damping -0.02 

 

 Wind estimation is performed on the experimental platform prior to terminal guidance using a box-pattern 

maneuver.  For this maneuver the vehicle flies a square pattern recording yaw angle and GPS ground velocity 

measurements.  Using the linear least-squares regression technique described in [22], estimates of the steady-state 

wind components 
x

W  and 
y

W  are computed, along with estimated vehicle airspeed 
h

V .  Once the mean wind and 

airspeed estimates are computed, the variance of the wind components can be estimated according to, 

 

        2 2

1 1

1 1
,

1 1

n n

i i

x x x y y y

i i

W W W W W W
n n

 
 

   
 
   (9) 

 

where n is the number of GPS measurements taken during the box pattern, and 
i

x
W ,

i

y
W  are solutions to the wind 

triangle at the i
th

 GPS measurement, i.e.,  

 

    cos sin
i i

x h i i y h i i
W V x W V y      (10) 

 

Note that in equation (10) ,
i i

x y  are the i
th

 measured GPS velocities, and 
i

  is the i
th

 measured yaw angle.  The 

estimated mean wind components and wind variances in equation (9) may be used directly in the stochastic guidance 

algorithm described in Section 2.2. 

   

4. Results 

 A set of simulation and flight test results is presented for the proposed stochastic guidance scheme 

highlighting various tradeoffs and performance trends.  First, example simulations are provided as well as Monte 

Carlo simulations demonstrating tradeoffs in selection of guidance system parameters.  Based on these simulation 

studies, a proper set of guidance system parameters are selected for use in flight experiments.  A set of experimental 

results are then presented comprised of 12 flights incorporating the stochastic GPU guidance algorithm, and 11 

flights using the open-loop kinematic planner described in Section 2 for comparison purposes.  Throughout this 

section, the kinematic open-loop terminal guidance algorithm is referred to as “standard guidance”, whereas the 

stochastic guidance algorithm is referred to as “GPU-based guidance”.  Two example flights are shown using 

standard guidance to provide baseline nominal trajectories.  Then, several example trajectories using standard 

guidance and GPU-based guidance are compared.  Finally, dispersion results are shown for both standard and GPU-

based guidance, and the ability of GPU-based guidance to provide robust obstacle avoidance is demonstrated in a 

practical setting. 

 
4.1  Simulation Studies 

 
The example scenario employed for this paper uses a trapezoidal constraint in the target area with corners 

located at (x, y) points of (-30 m, -183 m), (-30 m, -20 m), (183 m, 45 m), and (183 m, -183 m).  The target is 

D
ow

nl
oa

de
d 

by
 U

N
IV

. O
F 

A
R

IZ
O

N
A

 o
n 

O
ct

ob
er

 5
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
21

06
 



12 

 

located at the origin.  Note that while this constraint geometry is simpler than those considered by the authors in [17] 

(which involved complex terrain), it is selected strictly for the purposes of experimental testing.  GPU-based 

guidance is configured to avoid this constraint area while still landing near the target by selecting an appropriate cost 

function parameter kg in equation (6).  In computing the cost function in (6), pi is determined by counting the 

number of impacts in the Monte Carlo run that land inside the constraint.  Based on simulation results presented 

later in this section, M = N = 11 and Rs =40 were chosen, while the number of trajectories per Monte Carlo run was 

selected as 60.  Note that the choice of 60 trajectories per Monte Carlo run is meant to provide a statistically 

significant sample of the randomized wind model (based on the rule of thumb provided by Van Belle [23] using a 

standardized distance of 0.5 for the impact miss distance).  Figure 9 shows three simulated GPU-based terminal 

guidance trajectories with different values of kg starting from an initial location of x = y = −121 m, z = −170 m, with 

winds of 3.6 m/s in the downrange direction.  Note that, as expected, the terminal guidance paths become more 

conservative as kg is increased, since probability of impacting within the constraint is penalized more highly than 

landing accuracy.  Miss distances for these cases are 9 m for kg = 0, 14 m for kg = 1.5, and 53 m for kg = 15. 

The effect of kg is more accurately quantified through Monte Carlo simulations.  For various values of kg, a 

200-run Monte Carlo simulation was conducted with randomized wind conditions.  Steady-state wind heading and 

magnitude were sampled according to normal distributions with means of 0 deg and 2.4 m/s, and standard deviations 

of 30 deg and 1.2 m/s respectively.  Furthermore, in each simulation a random gust was introduced at some point in 

the terminal trajectory.  The random gust is modeled as a discrete change in wind lasting the remainder of the flight, 

with magnitude selected randomly from a normal distribution with a mean equal to the nominal wind value, and 

standard deviation of 1.8 m/s.  The gust direction is chosen from a uniform distribution centered on the nominal 

wind direction with bounds of +/-45 deg.  Figures 10-12 show the results of these simulations.  In Figure 10, the 

impact dispersions become redistributed around the obstacle as kg grows, so that when kg = 15 only a single impact 

lands within the constraint.  Figure 11 shows that, for values of kg > 15, impacts within the constraint are largely 

eliminated.  At the same time, Figure 12 shows that target-centered Circular Error Probable (CEP) increases until kg 

= 15, and then largely levels off.  Based on these results, a gain of kg = 15 was selected for the flight experiments 

since only a small number of flight tests would be conducted, and it was desired that obstacle avoidance be 

emphasized over landing accuracy.  Note that, although not shown here, simulation studies verified that a negative 

kg value will actually drive the impact dispersion pattern into the constrained region, rather than away from it.  By 

locating the target point inside the constrained area and selecting a negative kg, the guidance algorithm can be 

configured to address the constrained drop zone scenario shown in Figure 3. 

 

 
Fig 9.  Example Simulated GPU-Based Terminal Guidance Trajectories. 
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Fig. 10.  Impact Point Dispersion Patterns with GPU-Based Terminal Guidance. 

 
Fig. 11.  Percent Impacts within Constraint vs kg for Example Scenario. 
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Fig. 12.  CEP vs kg for Example Scenario. 

 

 
 A final trade study involves the size of the optimization grid used to generate candidate trajectories, defined 

by parameters M and N, and the number of trajectories that are selected for Monte Carlo analysis, Rs.  During each 

guidance cycle, M  N total trajectories are considered, with the top Rs candidates selected for Monte Carlo 

evaluation.  For the cases considered here, these were selected as the Rs trajectories with the least miss distance 

based on kinematic predictions (therefore, Ji  = e in equation (4), where e is the estimated miss distance from 

equation (5)).  To analyze guidance system performance as a function of M, N, and Rs, Monte Carlo simulations 

similar to the above were performed for various values of Rs and M, where it was assumed that the number of 

possible yaw rates M and the number of possible final yaw angles N were the same (i.e, M = N).  A value of kg = 15 

was used.  Figures 13 and 14 show percentage of impacts within the constraint and CEP respectively as a function of 

M and Rs.  Note that, for very high resolution grids, both obstacle avoidance and accuracy suffer significantly 

because the guidance algorithm only evaluates a very small percentage of candidate trajectories, which turn out to be 

very similar.  For instance, with M = N = 200 (yielding 40,000 possible paths) and Rs = 50, the optimizer evaluates 

only 0.1% of possible paths which all turn out to be very similar anyway.  This is a case of undersampling the high 

resolution grid.  Conversely, if M = N is chosen very small (5 or less), obstacle avoidance is satisfactory but 

accuracy suffers.  This is due to undersampling of the path space, i.e. grid resolution is too coarse to provide an 

accurate path to the target.  Universally, it is seen that as Rs increases, better performance is achieved.  However, 

there are obvious runtime penalties for increasing Rs since more Monte Carlo simulations must be performed.  For 

the experimental tests performed here, values of M = N = 11 and Rs = 40 were chosen as a suitable balance between 

obstacle avoidance performance, accuracy, and runtime limitations.  Data near these values is highlighted in Figures 

13-14.  Since Monte Carlo simulations of 60 trajectories are performed for each of the 40 candidates, a total of 2,400 

trajectory simulations are generated every guidance cycle.  Note that these values are significantly less than those 

used in [16] since the embedded GPU used here has significantly less processing power than the desktop model used 

in prior simulation studies. 
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Fig. 13.  Percentage of Impacts within Constraint vs M and Rs for Example Scenario. 

 

Fig. 14.  50% Target-Centered CEP vs M and Rs for Example Scenario. 
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in all examples below, data is plotted in the guidance reference frame such that the estimated wind blows directly 

along the +y axis, i.e., exactly downrange, and the initial parafoil location is roughly at the bottom of each figure.  

However, these wind estimates are not entirely accurate and are computed at the beginning of terminal guidance – 

thus, an unanticipated cross wind component causes both trajectories to turn at a rate less than that required.  

Furthermore, in the case shown in Figure 16, poor wind estimates cause the parafoil to begin the final turn too early 

and overfly the target.  Miss distances for each of these cases, computed from the projected impact point, are 23 m 

and 72 m respectively. 

 

 
Fig. 15.  Standard Guidance Trajectory, Example 1. 

 
Fig. 16.  Standard Guidance Trajectory, Example 2. 
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4.3.  Experimental Results: GPU-Based Guidance 

 A primary goal of the flight experiments was to compare performance of standard guidance and GPU-based 

guidance in an experimental setting.  Note that the standard guidance flight shown in Figure 16 lands long of the 

target, and as a result would have landed in the constraint area defined above.  This is a clear example of where 

GPU-based guidance would be beneficial.  Alternatively, Figure 17 shows a GPU-based guidance experimental 

case.  In this flight, GPU updates are initiated as the parafoil nears the constraint.  Figure 18 shows the same flight, 

with dashed lines indicating the path commanded by the guidance algorithm during terminal guidance.  Note that the 

initial path commanded by the guidance algorithm is a left turn in order to dissipate altitude away from the 

constraint.  Shortly afterward, right turns are commanded toward the target.  Impact occurs short of the target on the 

proper side of the constraint, with a final miss distance of 16 m.  Figure 17 also shows a simulated trajectory from 

the exact initial conditions used in the flight experiment at the first GPU update.  Note that the simulated trajectory 

is similar in nature to that observed during the flight test.  However, in Figures 17 and 18 it is clear that the 

experimental system did not track the desired turn commands well – the vehicle consistently turned faster than the 

simulation predicted due to poor tracking error by the inner loop controller.  This tracking error was mitigated 

somewhat through feedback path planning, but in general had a detrimental effect on overall performance.  Figure 

19 shows the optimal trajectories provided by the GPU co-processor, where a negative turn rate indicates a left turn. 

 

 
Fig. 17.  GPU-Enabled Guidance, Example Flight Trajectory 1. 
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Fig. 18.  Optimal Guidance Paths Selected by GPU-Based Guidance, Example Flight Trajectory 1. 

 

 
Fig. 19.  GPU-Based Guidance Trajectory Solutions, Example Flight Trajectory 1. 
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shown on the left in Figure 20 demonstrates performance when terminal guidance is initiated rather far from the 

target.  Because of the conservative weighting of the control system, which values constraint avoidance much more 

than accuracy, the GPU-based algorithm commands a tight turn far from the target, such that altitude is dissipated 

well away from the constraint.  This behavior was observed in several tests, where the GPU-based algorithm 

commanded tight turns downwind and to the left of the constraint to significantly reduce the probability of constraint 

impact. 

 

 
Fig. 20.  GPU-Enabled Guidance, Example Trajectories 2 (right) and 3 (left). 

 

 Overall, 11 standard guidance and 12 GPU-based guidance flights were conducted.  Wind direction shifts 

between flights were accounted for by rotating the guidance reference frame with respect to the North-East-Down 

frame by with the estimated wind direction, and thus all impact locations can be plotted together in the same 

guidance system coordinate frame.  Figure 21 shows impact dispersion plots for standard guidance (left) and GPU-

based guidance (right).  In the standard guidance cases, a target-centered CEP of 46 m is observed, and 8 of 11 cases 

landed within the constraint.  GPU-based guidance cases exhibited a CEP of 77 m, and 2 of the 12 cases landed 

within the constraint.  In the standard guidance case, the tendency was for the vehicle to land upwind of the target 

(inside the constraint) due to a slight, but consistent, overprediction in wind magnitude.  This is typical of guided 

parafoil performance since winds are usually stronger at higher altitudes where the initial terminal guidance path is 

first computed.  However, in the GPU-based guidance cases, the trend is clear that the vehicle tended to miss in 

directions away from the constraint (i.e., downwind and to the left of the target area).  Miss distance clearly grows in 

the GPU-based guidance cases since obstacle avoidance is considered, which corroborates trends in simulation 

predictions shown in Figures 11 and 12.  Furthermore, note the high degree of similarity between the experimental 

GPU-based guidance dispersion pattern and the simulated dispersion pattern shown in the bottom of Figure 10, 

providing validation for the simulation results.  Finally, note that two GPU-based guidance trajectories in Figure 21 

landed in the constraint.  It was determined that in these cases, and other cases as well, poor inner loop tracking 

performance and deadband in the control system played a major role in failing to execute the optimal guidance path.  

Thus, shallow turns commanded by the guidance algorithm typically were not executed well, and more moderate 

turn commands sometimes resulted in very sharp turns.  Potentially, an improved inner-loop control and/or an 

improved turn rate model within the 6DOF simulation may yield better accuracy and constraint avoidance 

performance beyond that observed here.  Note that, due to this poor tracking performance, the CEP of 77 m 

observed in experiment was somewhat higher than the 52 m predicted in simulation as shown in Figure 10. 

Overall, results indicate the proposed stochastic guidance solution is a practical algorithm that can be 

successfully implemented using commercial off-the-shelf components.  Use of emerging embedded GPU 
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architectures, more powerful that the system used here, is likely to lead to improved performance since a richer set 

of candidate trajectories may be evaluated (corresponding to larger Rs as shown in Figures 13 and 14).  Experimental 

performance largely matched that predicted in simulation, demonstrating the ability of the proposed guidance 

scheme to avoid obstacle regions near the target in the presence of wind uncertainty at the expense of increased miss 

distance.   

 

 
Fig. 21.  Impact Point Dispersions for Standard Guidance (left), and GPU-Based Guidance (right).  Dashed circle 

indicates 50% target-centered CEP. 

 

 

5.  Guidance Algorithm Compatibility 
 

 A primary strength of the proposed guidance algorithm is its compatibility with existing flight platforms.  

This compatibility is enabled through the decoupling of the guidance and control loops, which allows the GPU to 

function as a co-processor alongside existing autopilot hardware to generate terminal trajectory paths.  This section 

describes an additional algorithm extension that allows the GPU guidance law to interface with existing guidance 

logic, as well as additional simulation results of a larger-scale parafoil which demonstrate scalability of the 

algorithm to practical airdrop systems.  Finally, some recent hardware advancements are discussed that allow the 

GPU-based algorithm to be fielded at lower size, weight, and power compared to the flight test system described 

above. 

 

A.  Approach Phase Logic 

 

 While the GPU-based guidance algorithm formulated in Section 2.2 will provide an optimal solution from 

any initial location and heading, best performance is obtained when terminal guidance is initiated with the parafoil 

heading downwind at a lateral offset from the target.  The primary reason for this is that the path parameterization 

used in the guidance law consists of a constant-rate turn followed by a straight section, also known as a standard 

hook-turn approach.  If GPU guidance is initiated while heading downwind at a lateral offset from the target, it can 

provide a relatively gentle hook-turn geometry that will allow the parafoil to land into the wind (which is generally 

desirable for larger systems). 

 Many existing autopilot systems use a multi-phase approach geometry consisting of a loiter pattern, 

approach phase, and terminal maneuver phase.  While some autopilot algorithms transition directly from loiter to 

terminal approach, more advanced strategies may leverage an intermediate approach stage that allows the parafoil to 

dissipate altitude far from the drop zone and then proceed to the target area at the appropriate time prior to terminal 

guidance.  This section describes a terminal approach algorithm meant to link a general loiter pattern with the GPU-

based terminal guidance algorithm described above. 

 Figure 22 shows a general approach geometry consisting of four phases:  a homing phase in which the 

parafoil heads to the loiter area, a loiter pattern, approach phase, and terminal guidance path.  Typically production 

autopilot systems include relatively simple logic to perform the homing and loiter phases.  Upon reaching a certain 
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altitude, the vehicle exits the loiter pattern at the Loiter Exit Point (LEP) and proceeds through the approach phase to 

the turn initiation point (TIP), at which terminal maneuvers commence.  The TIP is located a distance R laterally 

from the target (with respect to the wind) and a distance D upwind of the target.  The approach path is configured 

such that the parafoil reaches the TIP heading exactly downwind at an altitude of z0. 

 To maintain compatibility with any general loiter configuration, an approach path generation algorithm is 

formulated to provide a flyable trajectory from the LEP to the TIP.  This trajectory is given by a Dubins path [24] 

consisting of an initial constant-rate turn, a straight segment, and a final constant-rate turn as shown in Figure 23.  

The approach path generation problem can thus be stated as follows: 

 

 

Given:  Initial parafoil state at LEP  , , ,
a a a a

x y z  , final parafoil state at TIP  , , ,
d d d d

x y z  , 

and desired turn rate 
des

  

Find elapsed times for each turn and for the straight segment given by ta, tb, and tc respectively. 

 

 

Since each of the two turns can be taken to the right or left, there are four solutions for (ta, tb, tc) which obviously 

differ in the total time required to complete the path.  To solve the trajectory generation problem, let the first and 

second turn rates be given as 
 1

des des
    and 

 2

des des
    respectively.  Note that  ,

b b
x y  may be written as, 

 

 
 

   1

1

0

cos sin sin

a
t

ss

b a x ss a x a des a a a

des

V
x x W V dt x W t t   


         (11) 

 

   1

1

0

sin cos cos

a
t

ss

b a y ss a y a des a a a

des

V
y y W V dt y W t t   


         (12) 

where for simplicity it is assumed that the parafoil arrives at the LEP at t = 0.  Likewise,  ,
c c

x y  is given by, 

       1
cos

c b x b a ss b a des a a
x x W t t V t t t        (13) 

      1
sin

c b y b a ss b a des a a
y y W t t V t t t                       (14) 

Given the expression for  ,
c c

x y , the location of the turn initiation point can be written as, 

    

   1

2
sin sin

ss

d c x c b W des a a

des

V
x x W t t t  


       (15) 

   

   1

2
cos cos

ss

d c y c b W des a a

des

V
y y W t t t  


                         (16) 

where 
W

  is the wind heading.  Substituting equations (11)-(14) into (15) and (16) yields: 

      

      

1

1 2 1 2
sin sin sin

ss ss ss ss

d a x a b c des a a a W

des des des des

V V V V
x x W t t t t   

   
     

 
   

 
 (17) 

     

      

1

1 2 1 2
cos cos cos

ss ss ss ss

d a y a b c des a a a W

des des des des

V V V V
y y W t t t t   

   
         

 
 
 

  (18) 

Recognizing that 
    1 2

/
c W des a a des

t t      , equations (17) and (18) can be rewritten as, 
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1

1

2 1 2 1 2
sin sin sin

W des a a ss ss ss ss

d a x a b des a a a W

des des des des des

t V V V V
x x W t t t

  
   

    

 
     

   
     

   
  (19) 

 

     

      

1

1

2 1 2 1 2
cos cos cos

W des a a ss ss ss ss

d a y a b des a a a W

des des des des des

t V V V V
y y W t t t

  
   

    

 
         

   
   
   

  (20) 

Since the TIP location  ,
d d

x y  is given, the only unknowns in equations (19) and (20) are ta and tb.  By 

constraining 
 1

0, 2 /
a des

t      , these algebraic equations may be solved numerically for ta and tb (using for 

instance a Levenberg-Marquardt algorithm [25]) thereby generating the approach trajectory. 

 Four possible trajectory solutions always exist for (19) and (20) corresponding to the first turn in the right 

or left direction, and the second turn in the right or left direction.  Each solution has a total elapsed time to 

completion given as ttotal = ta + tb + tc.  Assuming a constant descent rate Vz, the completion time may be 

transformed into a completion altitude given by /
z total

V t .  In practical implementations, each of the four possible 

trajectories can be computed at regular intervals while in the loiter pattern, and the path with the minimum time to 

completion (
min

total
t ) selected.  If it is desired that the parafoil arrive at the TIP at altitude zd, then the critical altitude for 

loiter exit can be computed as /
min

crit d z total
z z V t  .  Thus, if at any time in the loiter pattern the altitude drops below 

the computed zcrit for the current parafoil state, the parafoil exits the loiter pattern and begins the approach trajectory. 

 

 
Figure 22.  Multi-Phase Parafoil Approach Geometry.  Any type of loiter pattern may be 

used (circular, square, figure 8, etc.). 
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Figure 23.  Dubins Path Approach Phase Segments. 

 

 

B.  Example Simulations 

 

 Example simulations are performed using a larger parafoil system than that described in Section 3.  The 

purpose of these simulations is to show how the approach generation algorithm can link GPU-based terminal 

guidance with standard loiter paths flown by production autopilot systems.  The larger example vehicle used here 

has a canopy span of 2.1 m , total mass of 14 kg, and nominal forward flight speed of 11.3 m/s.  The steady-state 

descent rate of this system is approximately 5.5 m/s in level flight.  For the simulations conducted here, the system is 

released at an altitude of 915 m above the target, and 400 m offset laterally to the northeast.  For the Dubins path 

approach, a desired turn rate of 
des

 = 30 deg/s is used, and the TIP is located 75 m laterally and 30 m upwind from 

the target with respect to the wind direction.  Furthermore, the desired altitude upon reaching the TIP is zd = 215 m.  

Figure 24 shows the results of two example trajectories with winds directly to the North at a speed of 3.1 m/s.  In the 

first trajectory (no obstacle), the cost function penalty in (6) penalizes accuracy only, and thus kg = 0.  In this case, 

the parafoil enters a predetermined loiter pattern northeast of the target (in green).  At 1 sec intervals in the loiter 

pattern, Dubins approach paths are generated and the critical altitude computed.  When the altitude reaches zcrit, the 

parafoil exits the loiter pattern and begins the approach phase (shown in blue).  As shown in Figure 25, this occurred 

at an altitude of approximately 415 m, and the parafoil reached the TIP at an altitude of 223 m which is close to the 

desired value of  zd = 215 m.  In this case, a sequence of two right turns was the optimal solution for the Dubins path 

approach.  Upon reaching the TIP, the parafoil initiates GPU terminal guidance.  The resulting trajectory path 

resembles a hook turn and, in the no-obstacle case (shown in black), results in a miss distance of 7 m.  A second 

example case is performed using a rectangular obstacle placed in the southeast quadrant near the target with a cost 

function penalty of kg = 1000.  This terminal trajectory (shown in purple) takes a slightly more conservative 

approach path resulting in an increased miss distance of 15 m. 

 Monte Carlo simulations of 200 trajectories are performed for this example vehicle by randomly varying 

the drop altitude between 670 m and 1200 m, and by randomizing the winds between 0 and 8.5 m/s in magnitude 

and 0 and 2π in direction, with all distributions being uniform.  Randomly varying the drop altitude ensures that the 

vehicle exits the loiter pattern in a random location for each trajectory.  The results of this Monte Carlo simulation 

are shown in Figure 26.  For the no-obstacle case, the target-centered 50% CEP is approximately 8 m.  Using the 

same obstacle geometry and weighting as shown in Figure 24, the obstacle cases exhibited a 50% CEP of 13 m, 

while avoiding the constraint in 100% of cases.  Note that this obstacle is intentionally placed very close to the target 

(within 3 m) to highlight the rather favorable performance of the guidance system, even in moderate winds up to 8.5 

m/s. 
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Figure 24.  Example Complete Guidance Trajectories Including Loiter and Approach Segments. 

 

Figure 25.  Computed Critical Altitude vs Time for Dubins Path Approach. 
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Figure 26.  Monte Carlo Simulation Results for Larger Vehicle Full Guidance Simulation. 

 

C.  Improved Embedded GPU Hardware 

 

 Since the hardware experiments described in Sections 3 and 4 were performed, new embedded GPU 

hardware has become available in the form of the NVIDIA Jetson TK1 development kit.  This development board, 

shown in Figure 27, features a quad-core ARM processor and 192-core Kepler-class GPU with 1.7 GB of GPU 

global memory and a GPU clock speed of 852 MHz.  The current cost of a single board is $192.  These 

specifications mean the onboard GPU is significantly cheaper and more powerful than the Quadro-class GPU used 

in the flight experiments described in Sections 3 and 4.  In addition the board footprint is significantly smaller at 4.5 

in 4.5 in, and weighs less than 1 lb.  An autopilot interface to the board may be easily established using the RS232 

port on the Jetson board.  Initial experiments in attaching this new GPU board to a standard parafoil autopilot and 

running the proposed terminal guidance algorithm has been successful, with hardware-in-the-loop simulations 

demonstrating significantly improved computational performance compared to the previous experimental setup.  

Note that inclusion of additional cores (192 with the Jetson vs 96 with the Quadro) allows for the use of a larger 

number of candidate trajectories Rs, which, as shown in Figures 13 and 14, generally translates to better algorithm 

performance in terms of accuracy and obstacle avoidance.  As embedded GPU hardware becomes more advanced in 

terms of SWAP and computational capability, it is expected that the algorithm proposed here will provide better 

real-world performance and become increasingly practical.  

  

 

Figure 27.  NVIDIA’s Jetson TK1 Development Board [26]. 
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6. Conclusions 

 A stochastic parafoil terminal guidance algorithm has been presented and implemented on an experimental 

system.  The algorithm selects a path to the target which is robust to wind disturbances through a statistical 

optimization procedure involving real-time Monte Carlo simulation.  The optimization cost function trades delivery 

accuracy for obstacle avoidance, and may be tailored for specific terminal guidance scenarios.  A practical 

implementation of the stochastic guidance scheme is demonstrated by integrating a standard autopilot processor with 

a GPU co-processor for real-time uncertainty propagation.  Experimental results with a small flight test system 

demonstrate the guidance algorithm’s capability to weigh the dual goals of accuracy and obstacle avoidance given 

wind uncertainty.  These experimental results compare favorably to results using a deterministic guidance approach 

that assumes perfect knowledge of the winds, generally corroborating trends seen in simulation.  Comprehensive 

simulation results demonstrate the guidance system’s ability to avoid obstacle areas near the target in the presence of 

wind gusts, and the effect of various guidance system parameters on landing performance is quantified.  Overall, 

results show that stochastic control through real-time GPU-based uncertainty propagation is a practical technique 

that can be implemented for robust guidance of autonomous parafoil systems. 
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