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Guided parafoil systems lacking propulsion pose significant control challenges.
Landing accurately is challenging, and guidance strategies demand control sig-
nals be kept stable in the face of noise and uncertain dynamics. Larger systems
present additional hurdles leading to an interest adaptive control. Conventional
pole-placement based non-adaptive and adaptive control are compared to L1 adap-
tive control on a dynamic parafoil model. The results illustrate the advantages and
disadvantages of each approach, and provide design and implementation guidelines
for future work.

I. Introduction
Large parafoil systems (on the order of 10,000 lbs) pose control challenges, including a potentially
dangerous aerodynamic mode (dutch-roll) at low frequency, large motor lag, varying dynamics
from system to system as a result of motor wear, frequent hardware changes, motor saturation,
and more prominent non-minimum phase behavior than smaller systems. Operational constraints
dictate fewer flight tests for system identification–each system takes on the order of days to rig. As
a result, adaptive control is an appealing method to address some these challenges.

Given the constraints outlined above, achieving “perfect” tracking is less critical than maintaining
system stability. In this context, ensuring control signals do not contain frequency content too near
or above the naturally unstable dutch-roll is crucial. If this mode is excited, the system responds
drastically differently from the nominal model. In an adaptive control context, this is especially
problematic, given the large transients and high frequency commands generally associated with
adaptive schemes.

An approach that filters the control signal to separate the high frequency adaptive estimators from
directly impacting the system is desirable. A relatively recent method, referred to as L1 adaptive,
is designed with just such considerations, and presents an interesting alternative to more conven-
tional adaptive schemes.
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This study will consider L1 adaptive control, as compared with both conventional adaptive con-
trol, as well as non-adaptive control, in tracking representative signals for a large parafoil system.
The contribution of this paper is the complete discretization of the L1 adaptive control algorithm
suitable for real-time implementation on embedded parafoil hardware. In addition, the L1 adap-
tive control algorithm is directly compared with adaptive pole placement on representative parafoil
dynamics in a number of challenging scenarios, providing insight into the advantages and disad-
vantages of both algorithms.

The rest of this paper is organized as follows. Section II describes the model for the 10K parafoil.
Section III introduces and describes L1 Adaptive control in detail. Section IV briefly describes
adaptive pole placement control. Section V presents comparison results which are discussed in
section VI.

II. System Description
The toggle-command to heading rate of a large parafoil system (henceforth 10K) can be modeled
as a linear time-invariant (LTI) system of the form:

A(s) =
(s+ a)(s+ b)

(s+ c)(s2 + 2ζAωA + ω2
A)

(1)

where the constants are known to be approximately:

a ≈ 0.35

b ≈ −1.44

c ≈ 0.23

ωA ≈
2π

10

ζA ≈ 0.19

(2)

The dutch-roll mode is captured in the underdamped system of frequency ωA. While the value of
ωA is known to be reasonably accurate, system identification for the other values varies signifi-
cantly from one flight to another.

III. L1 Adaptive
A method referred to as L1 adaptive control is a relatively recent development in the literature, and
has developed as a result of considerations similar to those posed above: “protecting” systems from
the transient behavior characteristic of most adaptive strategies by using filtering. A full treatment
of L1 is beyond the scope of the present discussion, but the essential features will be reviewed. We
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will focus on the output-feedback formulation of L1 control. This discussion closely follows the
development in §4 of [1].

III.A. Problem Formulation

Consider the following single-input single-output (SISO) plant:

y(s) = A(S)(u(s) + d(s)) (3)

where u(s), y(s), and d(s) are scalars corresponding to system input, output, and disturbance.
A(s) is a strictly-proper unknown system, and the time domain version of the disturbance d(t, y)

is Lipschitz continuous:

|d(t, y1)− d(t, y2)| ≤ L|y1 − y2|, |d(t, y)| ≤ L|y|+ L0 (4)

for arbitrarily large L > 0 and L0 > 0.
The objective is to track a bounded reference input r(t) following an ideal reference plant model
M(s), which is a strictly proper minimum phase stable transfer function.
The system (3) can be rewritten as:

y(s) = M(s)(u(s) + σ(s)) (5)

σ(s) =
(A(s)−M(s))u(s) + A(s)d(s)

M(s)
(6)

Where the σ(s) term lumps together both the unknown plant dynamics and disturbance. In the
time domain this can be represented as a minimal, controllable, observable, stable system:

ẋ(t) = Amx(t) +Bm(u(t) + σ(t)), x(t) = 0

y(t) = Cmx(t)
(7)

where x ∈ Rn.
The role of the control u(s) will be to cancel out all these uncertainties, and to do so with bounded
transient behavior. A natural choice of control form is:

u(s) = C(s)(r(s)− σ(s)) (8)

where C(s) is a stable filter with unity gain to be chosen. Some manipulation enables writing (3)
in yet another way:

y(s) = H(s) (C(s)r(s) + (1− C(s))d(s)) (9)
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where

H(s) =
A(s)M(s)

C(s)A(s) + (1− C(s))M(s)
(10)

is stable and strictly proper, and an L1-norm condition is satisfied (hence the name):

‖H(s)(1− C(s))‖L1L = ‖G(s)‖L1L < 1 (11)

From the structure of (9), it is clear the choice of u(s) in the form of (8) means the closed loop
system will not match the “ideal” reference model M(s) perfectly, but will rather represent a
filtered version. We will refer to this system, where the uncertainty is entirely cancelled out within
filter C(s) bandwidth, corresponding to the achievable control objective for L1 control, as yref . If
C(s) = 1 in expressions (9) and (10) shows H(s) reduces to M(s) exactly.

III.B. Controller Structure

The L1 controller is composed of an output-predictor, controller, and an adaptation law.

OUTPUT PREDICTOR Since we are lumping all plant dynamics and disturbance into the σ term,
the most general form this can appear is an “unmatched” form:

˙̂x(t) = Amx̂(t) +Bmu(t) + σ̂(t), x̂(0) = 0

ŷ(t) = Cmx̂(t)
(12)

This choice for the form of σ̂(t) will complicate the form of the control law.

III.B.1. Control

The control law is:

u(s) = C(s)r(s)− C(s)
cm(sI − A)−1

cm(sI − A)−1bm
σ̂ (13)

This peculiar form results from the choice of σ̂ as being “unmatched”, to transform it from a vector
into a scalar (Rn → R). Effectively, the second term is attempting to calculate something likeB−1

m .

For practical implementation, this second term can be created in the following manner. By mak-
ing a state-space model using Am, Cm, and letting the B matrix be In, the n-dimensional identity
matrix, the numerator term can be created. Both this model and the regular state-space model
for M(s) can be transformed into discrete transfer functions, and n new transfer functions can be
formed out of the numerators of both systems (since both have the same poles). This cascade of
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discrete transfer functions can be be put back into a discrete state-space form. Discrete systems
are used, since the structure of this term would result in improper transfer functions (or descriptor
continuous state-space models).

III.B.2. Adaptation Law

Define the error dynamics between the output predictor (12) and the plant in state space form (7),
or x̂− x, as:

˙̃x(t) = Amx̃(t) + σ̂(t)−Bmσ(t), x̃(t) = 0

ỹ(t) = Cmx̃(t)
(14)

The adaptation law is given in terms of the CPU sampling time Ts of the system running the
adaptation at time steps i = 0, 1, 2, .., where the estimate is held at each time step.
With the error signal ỹ as in (14), the adaptation law for σ̂ is:

σ̂(t) = σ̂(iTs), t ∈ [iTs, (i+ 1)Ts)

σ̂(iTs) = Γ(Ts)ỹ(iTs)
(15)

where Γ(Ts) is a precomputed constant defined as:

Γ(Ts) = −Φ−1(Ts)e
ΛAmΛ−1Ts11 (16)

where 11 = [1, 0, ..., 0]T ∈ Rn, and

Φ(Ts) =

∫ Ts

0

eΛAmΛ−1(Ts−τ)Λ dτ (17)

and

Λ =

[
Cm

D
√
P

]
(18)

where P = P T > 0 satisfies the algebraic Lyapunov equation:

ATmP + PAm = −Q, Q = QT > 0 (19)

and D is an (n−1)×n matrix containing the null space of cm(
√
P )−1. The structure of P ensures√

P can always be found (using Cholesky decomposition, for example). This construction ensures
Λ−1 exists.

5 of 27

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

. O
F 

A
R

IZ
O

N
A

 o
n 

O
ct

ob
er

 5
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
21

07
 



For implementation the following simplification is helpful:

Φ = ΛAmΛ−1(eΛAmΛ−1Ts − I)Λ (20)

This whole structure seems quite complicated, but, as expected, is helpful in proving stability,
as will be described in §III.D. This form does not require parameter projection, like many other
adaptive laws, including other formulations for L1 control.

III.C. Discrete Time Implementation of Output-Predictor

The formulations presented thus far, following [1], use continuous time transfer functions and
state-space models. Guided airdrop systems run control loops relatively slowly, on the order of
1-10 Hz. As a result, continuous time represents a poor approximation to real system behavior.
To examine the applicability of L1 in this context, all expressions are discretized, including the
output-predictor.

The non-matched formulation in §III.B requires careful transformation from continuous to discrete
time. We proceed using a procedure from [2] for converting continuous systems to discrete time
using zero-order-hold sampling.

Recall the expression for the output-predictor:

˙̂x(t) = Amx̂(t) +Bmu(t) + σ̂(t)

ŷ(t) = Cmx̂(t)
(21)

Using the variation of constants formula, expressing the effects of sampling the control signal u(tk)

and adaptation term σ̂(tk) for discrete steps k over tk ≤ t ≤ tk is straightforward:

x̂(t) = eAm(t−tk)x̂(tk) +

∫ t

tk

eAm(t−s′)(Bmu(s′) + σ̂(s′))ds′ (22)

= eAm(t−tk)x̂(tk) +

∫ t

tk

eAm(t−s′)ds′(Bmu(tk) + σ̂(tk)) (23)

= eA(t−tk)x̂(tk) +

∫ t−tk

0

eAm(s)ds(Bmu(tk) + σ̂(tk)) (24)

= Φ(t, tk)x̂(tk) + Γ∗(t, tk)(Bmu(tk) + σ̂(tk)) (25)

where the second expression reflects u and σ̂ taking constant values over the sampling time. We
use the symbol Γ∗ to distinguish from the traditional Γ term, which incorporates B. We treat the
system as having input u and output y sampled at the same instants. Assuming sampling with
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constant period Ts, giving tk = kTs, allows us to write the difference equation for this system as:

x̂((k + 1)Ts) = Φx̂(kTs) + Γ∗(Bmu(kTs) + σ̂(kTs))

ŷ(kTs) = Cmx̂(kTs)
(26)

where

Φ = eATs

Γ∗ =

∫ Ts

0

eAsds
(27)

From (27) we have:

dΦ(t)

dt
= AΦ(t) = Φ(t)A (28)

dΓ∗(t)

dt
= Φ(t) (29)

Matrices Φ and Γ satisfy the expression:

d

dt

[
Φ(t) Γ∗(t)

0 I

]
=

[
Φ(t) Γ∗(t)

0 I

][
A I

0 0

]
(30)

Where the identity matrices I are appropriately sized. To explicitly solve for Φ(Ts) and Γ∗(Ts) the
following block matrix can be evaluated:[

Φ(Ts) Γ∗(Ts)

0 I

]
= exp

([
A I

0 0

]
Ts

)
(31)

Using (31) the entire L1 algorithm, including the output-predictor in (21), can be implemented in
discrete time, as shown in Figures 1 and 2.

III.D. Main Boundedness/Stability Result and Proof Outline

MAIN RESULT Restating the entire proof from [1] is beyond the scope of the current discussion.
Rather, we state the main result, and briefly outline the key steps involved in the proof. Once again,
this section draws heavily from [1].

Theorem 1. Consider the system in (1) and the L1-controller defined in the previous section. If
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SaturationReference Signal

r

Gamma(Ts)

K*u

Disturbanced

Discrete Sigmahat Filter (Bm inverse)

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Plant (A)

numAd(z)

denAd(z)

Discrete Output Predictor

u

Sigmahat
yhat

DelayC Discrete Filter

numCd(z)

denCd(z) u

Sigmahat

err

y

Figure 1. L1 Adaptive Control Structure, discrete time.

yhat
1

Discrete Output Predictor

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Bm

K*u

Sigmahat
2

u
1

Figure 2. L1 Adaptive Output Predictor Structure, discrete time. Note the way the σ̂ term is augmented to the
reference model dynamics, representing “unmatched” uncertainty (see §III.C).

the CPU sampling time Ts is chosen such that

γ0(Ts) < γ̄0 (32)

for some positive constant γ̄0, then:

‖ỹ‖L∞ < γ̄0 (33)

‖yref − y‖L∞ < γ1 (34)

‖uref − u‖L∞ ≤ γ2 (35)

8 of 27

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

. O
F 

A
R

IZ
O

N
A

 o
n 

O
ct

ob
er

 5
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
21

07
 



where

γ1 ≡
‖H(s)C(s)/M(s)‖

1− ‖G(s)‖L1L
γ̄0 (36)

γ2 ≡
∥∥∥∥H(s)C(s)

M(s)

∥∥∥∥
L1
Lγ1 +

∥∥∥∥H(s)C(s)

A(s)M(s)

∥∥∥∥
L1
γ̄0 (37)

and H(s) is given in (10).

In essence, this theorem states the tracking error between the real system and achievable L1 refer-
ence system (yref ) is bounded by a constant determined by Ts, as are the magnitude of control sig-
nals. Since the reference achievableL1 system is stable and designed with desired performance, the
adaptive controller will perform similarly, with uniform bounds, even during the transient phase.
In addition, these bounds can be reduced by decreasing the CPU sampling time.
Also noteworthy is the lack of requirements on the reference signal, with the exception of being
bounded–no requirements of sufficient richness are needed to ensure the results.
As stated earlier, however, the reference achievable L1, as defined in (9) and (10), does not track
with the same behavior as the “ideal” reference system M(s), thus the adaptive controller will not
either. The filter C(s) has the effect of canceling only uncertainties within its bandwidth, and,
as expected, introducing a filter will cause some phase delay. The issue of designing the filter is
discussed in §III.E.

III.D.1. Outline of Proof

At this point we will outline the essential steps used in proving Theorem 1.
The first step is to demonstrate ‖ỹ‖L∞ < γ̄0.
Introduce a state transformation:

ξ̃ = Λx̃ (38)

which gives the following alternative expression for the error dynamics (14):

˙̃ξ = ΛAmΛ−1ξ̃ + Λσ̂(t)− ΛBmσ(t), ξ̃(0) = 0 (39)

ỹ = ξ̃1(t) (40)

where ξ̃1 is the first element of ξ̃(t). Demonstrating ξ̃ remains bounded will thus demonstrate
‖ỹ‖L∞ < γ̄0.
Noting (39) corresponds to a linear system with exogenous input forcing functions Λσ̂(t) and
−ΛBmσ(t), we can see the standard variation of constants solution will involve an integral for
each term, and from the structure of ξ̃, with its first element being ỹ, we can express the solution
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to (39) as the sum of two components:

ξ̃(iTs + t) = χ(iTs + t) + ζ(iTs + t) (41)

Re-expressing the argument of ξ̃, we have:

χ((j + 1)Ts) = eΛAmΛ−1Ts

[
ỹ(jTs)

0

]
+

∫ Ts

0

eΛAmΛ−1(Ts−τ)Λσ̂(jTs) dτ (42)

ζ((j + 1)Ts) = eΛAmΛ−1Ts

[
0

z̃(jTs)

]
+

∫ Ts

0

eΛAmΛ−1(Ts−τ)bmσ(jTs) dτ (43)

Substituting the adaptive law for σ̂ from (15) into (42) gives:

χ((j + 1)Ts) = 0 (44)

What remains to show is the stability and boundedness of ζ((j + 1)Ts) in (43). The Lyapunov
equation

V = ζT (t)Λ−TPΛ−1ζ(t) (45)

can be used to do this, and the resulting bound is a function of Ts, as expected. Thus ‖ỹ‖L∞ < γ̄0

is established.
Combining this result with

‖yref − y‖L∞ <
‖H(s)C(s)/M(s)‖

1− ‖G(s)‖L1L
‖ỹ‖L∞ (46)

which is proven in [1], proves (34), which in turn combines with the Lipschitz assumption for the
disturbance to give (35).
For the exact bound forms see [1].

III.E. Filter Design

The results above omit the most crucial design aspect ofL1 control: choosing appropriate reference
modelsM and filtersC. Other than appearing in the forms for the bounds of γi above, which shows
a filter is required for bounded controls for non-minimum phase systems, for instance, the result
is not constructive. There are numerous results in the literature for this process for the output-
feedback case, including those based on satisfying another L1 condition, using optimization [3],
[1], as well as robust control [4]. For the present study, a method based on pole-placement [5] is
pursued.
The idea is to match the poles of the L1 closed loop system, H given in (10), with another pole-
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placement controlled system.
In general, the method of pole placement relies on solving the Diophantine equation:

Z(s)P (S) +R(s)Qm(s)L(s) = A∗CL(s) (47)

where the plant is defined as:

A(s) =
Z(s)

R(s)
u (48)

and the feedback control to place the poles at A∗CL(s) is:

K(s) =
P (s)

Qm(s)L(s)
(49)

and Qm(s) is defined as in [6], corresponding to the internal model of the reference signal to be
tracked. After some simple manipulation the method of choosing C and M is given by matching
the two expressions:

C(s)

M(s)(1− C(s))
=

Cn(s)Md(s)

Mn(s)(Cd(s)− Cn(s))
=

P (s)

Qm(s)L(s)
(50)

requiring both C and M are stable, and the closed loop system H given in (10) satisfies the L1

stability condition.
Thus there are three design parameters to play with (A∗CL(s), C(s), M(s)), subject to these condi-
tions.
In an ideal setting, more exotic forms for bothC andM could be investigated, including Chebyshev
and elliptic filter schemes. For the sake of simplicity, however, the structure of C(s) is restricted
to a conventional second order low-pass filter:

C(s) =
ω2
C

s2 + 2ζCωCs+ ω2
C

(51)

where the values of ωC and ζC are chosen to correspond to desired control signal filter behavior.
With this choice, (50) becomes:

ω2
CMd(s)

Mn(s)(s2 + 2ζCωCs)
=

ω2
CMd(s)

Mn(s)s(s+ 2ζCωC)
=

P (s)

Qm(s)L(s)
(52)

A natural choice for Qm(s) in this context is s, corresponding to tracking of step inputs, giving
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(50):

ω2
CMd(s)

Mn(s)(s+ 2ζCωC)
=
P (s)

L(s)
(53)

We can then write:

Md(s) =
P (s)

ω2
C

Mn(s) =
L(s)

(s+ 2ζCωC)

(54)

In order to match the poles exactly, (s+ 2ζCωC) must divide L(s) with no remainder.
At this point, we use the system description for 10K to design the filter coefficients for C. As
described above, the dutch-roll mode appears at roughly 2π/10 = 0.6283 rad/s, and ωC is chosen
to be well below this to ensure attenuation of control signals near the dutch-roll. Then ζC can be
chosen to ensure (s+ 2ζCωC) divides L(s) evenly. As described above, this choice will result in a
phase shift, which is determined to be acceptable.
The challenge of this method now comes with picking A∗CL(s), the desired closed loops poles.
Since the system is non-minimum phase, there are performance limitations using any control
scheme, and given the control signal is a real-life system with saturation, the poles cannot be
moved too far without requiring unattainably large control signals.
As described in [7], an ideal closed loop parafoil system should exhibit characteristics of a low-
pass filter, with near unity gain at low frequencies, and attenuate signals at frequencies near the
dutch-roll mode. Complicating matters, both M and C must themselves be stable and minimum
phase.
To address all these issues an optimization problem could be formulated, but for the sake of sim-
plicity a method of trial and error was chosen. Since the LQR algorithm can be thought of as
optimal pole-placement given state and cost weightings, poles were generated using the MATLAB
lqr() method until satisfactory performance was achieved satisfying the stability conditions.
The final values for A∗CL(s), C and M are chosen as:

A∗CL(s) =
[
1.0000 2.6190 3.7092 2.9763 1.4718 0.3636 0.0332

]
(55)

corresponding to two sets of roots at both −0.5305± 0.6724i and −0.2485, and

C =
(0.33)2

s2 + 2(4.3314)(0.33)s+ (0.33)2

M =
−0.097983(s+ 0.403)

(s+ 0.232)(s2 + 0.3374s+ 0.2557)

(56)
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These correspond to an overdamped filter for C, a system M with poles somewhat more negative
and less oscillatory than the original 10K system specified in (2). The non-unity gain must be
divided out of reference signals for tracking.

IV. Adaptive Pole Placement Conrol (APPC)
Given the potentially non-minimum phase nature of the 10K system, conventional model-reference
adaptive control (MRAC), which relies on dynamics inversion, is not applicable. Given the pole
placement method used in §III.E to design the filter and reference system for L1, Adaptive Pole
Placement Control (APPC), as described in [6], for example, is a natural conventional scheme for
comparison. Block diagrams for both non-adaptive PPC and APPC are shown in Figures [3,4].

SaturationReference Signal

r

Plant

x’ = Ax+Bu
 y = Cx+Du

PPC

numCfb(s)

denCfb(s)

d

Delay

errerr

Figure 3. Conventional (non-adaptive) PPC Structure.

Saturation
Reference Signal

r

Plant

x’ = Ax+Bu
 y = Cx+Du

d

Delay
Adaptive Control Law

err

yp

up

up1
errerr

Figure 4. General Adaptive Control Structure. The adaptive law output is fed directly into the system, transient
behavior and all.

In addition to the description given with respect to how the L1 filters were chosen, the following
considerations were necessary for implementing a working APPC scheme:

• PPC Issues:

– Singularity checking, implemented by explicitly checking for pole-zero cancellation at
each time step.

– Ensuring Sylvester Matrix is well conditioned, and contains only finite numbers.
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• Adaptation Issues:

– Scaling of φ using standard scaling by m2
s = 1 + φTφ.

– Robust Adaptation, implemented using dead-zone at (1E-8 sec)m2
s

The final block diagram structure is shown in Figure 5.

up1
1

−C−

−C−

uT

uT

numZ(s)

APPCfilt(s)

Time Varying Continuous
Transfer Function

S−Function1

stvctf

Singularity Check/Ptb

thetaPptb_thetaP
fcn

Matrix
Multiply

Matrix
Multiply

Phi_y

x’ = Ax+Bu
 y = Cx+Du

Phi_up

x’ = Ax+Bu
 y = Cx+Du

Phi

Integrator

1
s

Gamma

K*uvec

Dead Zone
Dynamic

up

u

lo

y

−C−

alpha

−C−

1

Calculate Polynomials 
for Control

thetaP

alpha

numCfb

denCfb

numAPPC

denAPPC
fcn

up
3

yp
2 err

1

ms2

epseps

Figure 5. APPC Structure. Incorporates singularity checking, Sylvester matrix conditioning checking, as well
as standard scaling and robust adaptation with dynamic deadzone.

V. Results
L1, APPC, and PPC schemes were implemented in Simulink. APPC and PPC were simulated
using a fixed time step (Ts) of 1E-4 seconds (10 kHz). L1 was tested at 10 Hz. To demonstrate
some key differences between them, three different scenarios are presented:

1. Disturbance added

2. Time-delay to input added

3. System dynamics changed

All trajectory plots are angular velocity in rad/s versus time in seconds, corresponding to turn rate.

V.A. Disturbance Added

The following disturbance is added:

d = 0.05 max(r) sin(20ωAt) (57)

where r is the representative trajectory. The results are shown in Figures 6, 7, and 8.
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Trajectory versus reference
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Figure 6. PPC tracking with disturbance d = 0.05max(r) sin(20ωAt). All plots are versus time in seconds.
While tracking the reference trajectory is quite good, the control signal contains large spikes with high fre-
quency content.
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Trajectory versus reference
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Figure 7. APPC tracking with disturbance d = 0.05max(r) sin(20ωAt). Note the large transient behavior for
over a minute of the trajectory, with high frequency and full saturation of the control channel. The maximum
and minimum trajectory values reach are 2.4761 and -2.0820 rad/s, respectively.
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Figure 8. L1 tracking with disturbance d = 0.05max(r) sin(20ωAt), discrete implementation (10Hz). All
plots are versus time in seconds. Note the bounded transient behavior, with a smooth, bounded control signal
throughout the trajectory.
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Both PPC and and APPC, once its estimates converge, achieve relatively good tracking of the
reference signal. However, both in the adaptive portion of APPC, as well as in the steady-state
behavior of both controllers, this tracking is achieved at the price of high frequency control signals.
L1 tracking shows larger phase delay throughout the trajectory, but otherwise tracks the reference
signal reasonably well. This is achieved with much smoother, lower frequency control signals,
which do not have large transients.

V.B. Time Delay Added

An input time delay of 0.5 sec is added to each system. The results are shown in Figures 9, 10, and
11.

0 20 40 60 80 100 120 140

−0.5

0

0.5

Trajectory versus reference

 

 

r
y

0 50 100 150
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−0.5

0

0.5
Error

0 20 40 60 80 100 120 140
−0.2

−0.1

0

0.1

0.2

0.3
Control History

Figure 9. PPC tracking with input delay of 0.5 sec. All plots are versus time in seconds. Tracking the reference
trajectory has deteriorated somewhat, becoming oscillatory. The control signal again contains large spikes with
high frequency content.
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Figure 10. APPC tracking with input delay of 0.5 sec. All plots are versus time in seconds. Note the large
transient behavior at the beginning of the trajectory, with high frequency and full saturation of the control
channel, in addition to the expected phase lag.
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Figure 11. L1 tracking with input delay of 0.5 sec, discrete implementation (10 Hz). All plots are versus time
in seconds. Note the minimal transient behavior throughout, with a the time delay introducing more muted
oscillations, and still maintains a relatively smooth control signal.
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The results are similar to the case of disturbance added, with Both PPC and and APPC, once
its estimates converge, achieve relatively good tracking of the reference signal, with additional
oscillations resulting from the input delay. However, both in the adaptive portion of APPC, as well
as in the steady-state behavior of both controllers, this tracking is achieved at the price of high
frequency control signals.
In contrast, L1 tracking shows very similar behavior to the disturbance case, with more muted
oscillations from the time delay, maintaining similar performance to the un-delayed case. Once
again, this performance is achieved with much smoother control signals than either A/PPC.

V.C. System Dynamics Changed

The closed loop poles chosen and PPC controller were synthesized using the nominal system model
(1). Recalling the form from before:

A(s) =
(s+ a)(s+ b)

(s+ c)(s2 + 2ζAωA + ω2
A)

(58)

Now, the values are changed from (2) to:

a = 0.25 (0.35)

b = −2 (−1.44)

c = −0.31 (0.23)

ωA =
2π

11

(
2π

10

)
ζA = 0.12 (0.19)

(59)

which includes a slower, more lightly-damped dutch roll mode. The results are shown in Figures
12, 13, 14, and 15.
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Figure 12. PPC tracking with system dynamics changed from (2) to (59). All plots are versus time in seconds.
Tracking the reference trajectory has deteriorated somewhat, becoming more oscillatory. The control signal
again contains large spikes with high frequency content.
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Figure 13. APPC tracking with system dynamics changed from (2) to (59). All plots are versus time in seconds.
Note the high frequency control signal and large oscillatory tracking.
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Figure 14. L1 tracking system dynamics changed from (2) to (59), discrete implementation (10 Hz). All plots
are versus time in seconds. The increased oscillatory behavior is still slightly less than both A/PPC
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Figure 15. L1 tracking system dynamics changed from (2) to (59), discrete implementation (30 Hz). All plots
are versus time in seconds. Note the minimal oscillatory behavior throughout, maintaining a relatively smooth
control signal.
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In this case, APPC never appears to converge to particularly good values, tracking with quite a lot
of oscillatory behavior, as does the PPC. L1 tracking performance at 10 Hz likewise is also reduced
somewhat, but it still overshoots and oscillates less than either A/PPC method. If the sampling rate
in discrete L1 is increased 30 Hz, significantly improved performance is achieved.

VI. Discussion and Conclusion
The results for all three cases demonstrate different aspects of L1, as compared to both other adap-
tive control schemes, as well as conventional control.

The results shown for APPC, once the estimators converge, are on the whole relatively good. It is
important to note this performance is extremely sensitive to initial guesses for θ̂, however. Despite
including explicit singularity checking to ensure the calculation of control polynomials does not
become ill-posed, as well as protections to ensure the Sylvester matrix is well formed, if the initial
guess is too far from reasonable values, the adaptive scheme saturates the control and is unable to
recover, and stops tracking entirely. The dead-zone robust estimator is likewise quite sensitive–
setting the value too large has the same effects once the control saturates, and setting the value
too small fails to prevent the bursting characteristic of constant adaptation. In addition, no attempt
was made to ensure the reference signal was sufficiently rich, given the real-word application this
controller is designed for.

L1 always appears to have phase shift, which is a fairly clear result of inserting a low pass filter
in between the adaptation and the system. The advantages of having a smooth control signal, and
not exciting large transient behavior likewise follow intuitively given this structure. Although this
would not appear to be a justifiable practice in some contexts, in control of 10K, where smooth
controls and avoiding transient behavior is critical, the advantages appear to outweigh the costs of
increasing phase shift.

With respect to tracking, L1 appears comparable to PPC, by design. Since M and C were chosen
using PPC design, this is unsurprising. As demonstrated in the third example, however, conven-
tional PPC blindly places poles on a different system elsewhere, which can result in undesirable
behavior. Even with adaption added, in APPC, this can still result in undesirable behavior. WithL1,
however, changes in the dynamics which do not violate the stability conditions detailed above can
still maintain acceptable behavior, given the filtering design. Performance also improves greatly if
the sampling frequency is increased from 10 Hz to 30 Hz, still far lower than the 10 kHz sampling
rate for A/PPC.

A comparison of L1 adaptive control in discrete time with both APPC and conventional PPC has
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highlighted some tradeoffs of the different methods. In the context of large autonomous parafoil
systems, such as 10K, the advantages of L1 adaptive control appear to outweigh the disadvantages,
motivating further study into implementation and real-world testing.
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