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This paper investigates the use of atmospheric boundary layer theory to produce more accurate wind esti-
mates for guiding an autonomous parafoil during the last portion of its flight before touchdown. The problem
of wind estimation for a prototype autonomous parafoil aerial delivery system is first explained, followed by
the simple assumptions for wind estimation that its guidance algorithm makes. A logarithmic wind profile
model in the atmospheric surface layer is then introduced. The parameters and limitations of this model are
discussed, along with the characteristics of this model that make it especially useful over the surface of the
ocean. Finally, the incorporation of this model into the guidance algorithm of the prototype aerial delivery sys-
tem is discussed, and subsequently evaluated in flight tests against the original algorithm that did not include
the logarithmic surface layer wind model.

Nomenclature

ABL Atmospheric Boundary Layer

ADS Aerial Delivery System

AGL Above Ground Level

CARP Computed Air Release Point

NPS Naval Postgraduate School

RLS Recursive Least Squares

TIP Turn Initiation Point

UAH University of Alabama in Huntsville

UAS Unmanned Aerial System

Vf,Vr downwind (forward) or upwind (reverse) measured velocity of the ADS on a straight flight path

V ∗
h steady-state no-wind horizontal velocity of the ADS

V ∗
v steady-state no-wind vertical velocity of the ADS

W ,Ŵ horizontal wind speed, true value and estimate

YPG Yuma Proving Ground

I. Introduction

WIND disturbance during the landing phase of an autonomous parafoil’s flight is a leading contributor to miss

distance. In fact, flight tests of a small, prototype aerial delivery system (ADS) called Snowflake that is being

studied jointly by the Naval Postgraduate School and the University of Alabama in Huntsville have indicated that errors

due to unknown winds, along with errors in altitude estimation, were the two largest contributors to miss distance.1

For an autonomous parafoil system, unknown winds can have their most profound effect on landing accuracy just

prior to touchdown. For the Snowflake ADS, during the last 100m in altitude of the flight, the vehicle will commence

a final 180° turn for landing at the target headed directly into the estimated wind; yet, for this final maneuver, the

vehicle is relying on a wind estimate that was calculated before the final turn was begun.

The Snowflake algorithm assumes that the final wind estimate is constant down to the target; or, in the case that

wind information is being broadcast from a portable weather station at the target, a piecewise constant function is

assumed between the last estimated wind speed at altitude, and the measured wind speed at the target.2

In contrast to these assumptions, fundamental atmospheric boundary layer theory predicts a logarithmic increase

of wind speed with height in the surface layer as in the following relation:

W2 =W1

ln z2
z0

ln z1
z0

(1)
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where W1 and W2 are wind speeds at heights z1 and z2, and parameter z0 is known as an aerodynamic roughness length.

The value for the aerodynamic roughness length at the surface is estimated empirically based on the ground terrain.

In particular, this parameter has a very small value over the sea surface, and is fairly constant, and therefore easy to

estimate.3 The surface layer is defined as the lower-most region of the atmospheric boundary layer (ABL), from the

surface of the Earth to approximately 5% of the boundary layer height.3 The atmospheric boundary layer is defined

as the lower-most portion of the troposphere extending from the surface to as high as 4km in height. Thus, according

to this theory, the functional dependence of wind speed on height can be plotted as a straight line only on a semi-log

graph. Figure 1 illustrates this relationship graphically.
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Figure 1. Logarithmic increase of wind speed with height from boundary layer theory.

II. Background

Because there are many experimental and operational ADSs currently undergoing development and testing, differ-

ent techniques have been developed to mitigate the disturbance caused by the wind on the desired flight path of the

ADS. In this paper, specific focus will be on the Snowflake miniature prototype aerial delivery system that was de-

veloped through a collaboration between the Naval Postgraduate School and the University of Alabama in Huntsville.

An image of Snowflake in flight is shown in Fig. 2, and characteristics of the Snowflake ADS are presented in Table 1.

Details of the guidance strategy employed in Snowflake are developed in the following sections.

Table 1. Snowflake miniature aerial delivery system characteristics

Characteristic Value Units

dry weight 1.9 kg

canopy span 1.4 m

canopy chord 0.6 m

descent rate 3.7 m/s

forward speed 7.2 m/s

glide ratio 2:1

minimum turn radius 15.2 m

2
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Figure 2. Small-scale prototype aerial delivery system Snowflake.

A. Aerial Delivery System Trajectory Planning Overview

A survey of existing ADSs was completed in 2006 by Tavan.4 While there has been much ADS development

activity in the subsequent years, a common characteristic of such systems remains: they depend on a preflight wind

estimate so that a desired release point relative to the ground target can be computed. This point is called the Computed

Air Release Point (CARP) by definition in the U.S. Department of Defense dictionary of terms,5 and also in one of the

first studies to apply the term to autonomous ADSs by Yakimenko et al.6

Due to the possibly overpowering effect of strong winds on the flight path of the ADS, the CARP is most often

located upwind of the ground target so that the ADS has an easier downwind flight to the target. The more sophisticated

ADSs such as the NPS/UAH Snowflake plan their trajectory from the CARP to the target in two stages, a loitering

stage and an approach stage. During the loitering stage, the Snowflake ADS flies a holding pattern upwind of the

target, estimating wind velocity and calculating the moment when it should begin its approach. During the approach

stage, the Snowflake flies downwind to a point offset from the ground target, then completes a 180° final approach

turn, as detailed in the work by Slegers and Yakimenko.7 The upwind landing enables a more accurate landing, and

reduces the Snowflake’s velocity relative to the ground upon impact. A diagram of the overview of the guidance

strategy including the loitering pattern is shown in Fig. 3. The loiter pattern is defined by four waypoints at the corners

of the box pattern, labeled A, B, C, and D. The start of the final 180° turn is known as the Turn Initiation Point (TIP),

and the distances away and cycle define respectively the proximity of the loiter pattern to the target, and the major

dimension of the loiter pattern.

AB

C DTIP

away cycle

wind

target

Figure 3. Overview of guidance strategy including loiter pattern.

For analysis and testing, the guidance strategy is divided into phases as summarized below.7

Phase 0 After parafoil canopy first opens, no guidance commands are given for a few seconds while the Snowflake’s

flight path becomes steady.

3
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Phase 1 Snowflake follows heading command to point A.

Phase 2 Snowflake executes waypoint navigation in the loiter pattern A–B–C–D.

Phase 3 Snowflake executes a turn out of the loiter pattern towards the Turn Initiation Point (TIP).

Phase 4 Snowflake lines up to fly directly downwind to the TIP.

Phase 5 Snowflake tracks the optimal turn trajectory towards the target.

Phase 6 Snowflake flies directly upwind along the target line until landing.

B. Wind Estimation in the Snowflake Guidance Algorithm

Any sophisticated ADS that uses a two-stage trajectory plan as described in Section II.A must decide when to

switch from the loitering stage to the approach stage. For Snowflake, this decision is made based on a threshold altitude

known as zstart. In Fig. 3, the transition from the loitering stage to the approach stage is shown by the dotted-line flight

path from the loiter pattern towards the TIP. Furthermore, Snowflake must make a second decision about when to

begin the final 180° turn: either before or after it has reached abeam the target. The distance from the abeam position

to the TIP is given the label Dswitch; a positive value indicates that the TIP is after the abeam position, and a negative

value of Dswitch indicates that the TIP is before the abeam position. An overview diagram of the terminal guidance

maneuver is shown in Fig. 4. Note that the beginning of the flight path in this diagram labeled tstart corresponds to the

altitude zstart at which Snowflake changed from the loitering stage to the approach stage of flight.

tstart time of Snowflake commencing

Phase 4 (downwind to TIP)

t0 time of Snowflake arriving at TIP

and commencing Phase 5

texit time of Snowflake commencing

Phase 6 (steer to target)

t1 time of Snowflake intercepting final

approach course

t2 time of Snowflake touchdown

Tdownwind duration t0 − tstart

Tturn final turn duration t1 − t0
Tapp final approach duration t2 − t1
Dswitch optimal distance to pass the target

before commencing final turn

D̃ displacement during final turn due

to wind; positive value when point

t1 x-coordinate less than that of t0
L distance from target line at tstart

Lapp straight approach distance from

point t1 to target

R final turn radius

W x-component of wind velocity; pos-

itive value when blowing toward the

origin

ψ(t) reference raw function that is

tracked in final turn

ψ(t)

texit

x

yz

D̃

Lapp

R

W

t0 : TIP

t1

tstart

L

Dswitch

target

t2

Figure 4. Overview of terminal guidance maneuver.

In summary, the two major decision milestones that the Snowflake ADS guidance algorithm must compute in flight

are zstart and Dswitch, in that order. The computation of Dswitch is the final and most critical decision milestone and is

the focus of Section III.A.

Following the derivation by Slegers and Yakimenko,7 and using a three-dimensional, orthogonal coordinate frame

with its origin at the target, and axes as depicted in Fig. 4, expressions are developed for the changes in Snowflake’s

position in the x and z directions, given known coordinates of the starting and ending positions. In the xz plane, the

starting coordinates are (−L,−zstart), with L being defined as a positive number, and zstart as a negative number. The

4
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ending coordinates at the target are (0,0). Summing the starting value with the change in coordinate to equal the

ending value both in x and in z, two equations are obtained.

−L+L+Dswitch +

t1∫
t0

ẋ dt

︸ ︷︷ ︸
−D̃

+

t2∫
t1

ẋ dt

︸ ︷︷ ︸
−Lapp

= 0 (2)

zstart +

t0∫
tstart

ż dt +

t1∫
t0

ż dt +

t2∫
t1

ż dt = 0 (3)

Note that Eq. (2) with plus signs before the integral terms is a slight correction to the corresponding equation

in Slegers and Yakimenko (Ref. 7, Eq. 35), and that in Eq. (3), zstart is a negative number; therefore, all ż terms are

positive (assuming the ADS only descends and never ascends).

In the work of Slegers and Yakimenko,7 a set of simplifying assumptions is made that enables explicit expressions

to be derived for Dswitch and zstart. One of these simplifying assumptions is that the wind profile, or the wind speed

over a range of altitudes, is constant or piecewise constant. Examples of a constant and a piecewise constant wind

profile are shown in Fig. 5. Note that for these plots of wind profile, the independent variable, altitude z, is plotted on

the vertical axis.
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Figure 5. Examples of constant and piecewise-constant wind profiles.

The method used by the Snowflake ADS in flight to estimate wind speed is very simple and does not require the

use of a pitot-static airspeed sensor. An a priori estimate of the wind direction is used to align the loiter pattern so

that the long dimension of the rectangle ABCD is in the direction of the wind estimate. The result is that the two long

segments of the rectangular loiter pattern should be aligned very nearly directly downwind and upwind. Referring

to Fig. 3, the forward velocity that will be measured by the on-board GPS receiver as the Snowflake travels in the

direction of A to B on the downwind segment will be

Vf =V ∗
h +W (4)

and, similarly, the reverse velocity measured as the Snowflake travels in the direction of C to D on the upwind segment

will be

Vr =V ∗
h −W (5)

5
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Using Eq. (4) and Eq. (5), including speed measurements from both the downwind and upwind segments, an

estimate of the wind Ŵ can be computed with

Ŵ =
Vf −Vr

2
(6)

In practice, for each execution of the Snowflake main program loop, an estimate of the wind is calculated using

Eq. (6) and the most recently measured values of the velocities Vf and Vr.

III. Analysis

The assumption of a constant or piece-wise constant wind profile made in Section II.B is an extreme simplification

of a very complex and variable process. The assumption of a constant profile, while yielding a mathematical problem

that is much more tractable, is an assumption that has no basis in meteorological boundary layer theory. Instead,

meteorological theory postulates that within the ABL, whose height varies between 200m and 4km from the Earth’s

surface, there exists a lower layer within which heat and moisture interactions between the atmosphere and the Earth’s

surface cause significant changes in wind speed with height. This lower layer extends from the surface of the Earth up

to a height between approximately 20m to 200m and is known as the surface layer.3

The work by Stull3 presents three cases of overall atmospheric conditions, and three corresponding mathematical

models for the general wind profiles under these conditions. The simplest wind profile, the logarithmic model, cor-

responds to the case of neutral atmospheric stability. Neutral stability refers to the tendency of a parcel of air, once

displaced vertically from its original position, to remain in its new position, neither continuing vertical motion, nor

returning to its original position. It will be assumed in this paper that the logarithmic model corresponding to neutral

surface layer atmospheric stability, prevalent on overcast and windy days, is the appropriate wind profile model to

implement into the Snowflake ADS.

It is noteworthy that a couple of different research efforts have set forth theoretical bases for dealing with wind

models containing arbitrary wind profiles;8, 9 however, in this paper, the proposed logarithmic wind model will be

compared only to the previously implemented constant wind model. The extension of comparison of the logarithmic

wind model as well as the constant wind model to some of the newly-developed wind models is a worthy subject of

future research.

A. Iterative Calculation of Dswitch Using a Logarithmic Wind Profile

In the following derivation, the assumption of a constant or piecewise constant wind profile will be discarded and

replaced by the assumption that wind speed W varies logarithmically with altitude z as:

W (z) = α ln(−z)+β (7)

where α and β are constants. Note that, since altitude z is represented as a negative number according to the sign

convention in use, an additional factor of −1 is included in the argument of the logarithm. The derivation uses

this assumption for the wind profile, along with the assumptions that the steady-state, no-wind values of the ADS

horizontal and vertical velocities are known and labeled V ∗
h and V ∗

v . Furthermore, it is assumed that the wind vector

lies only in the horizontal plane, and is parallel with the x axis of the coordinate system depicted in Fig. 4. Using the

assumptions of constant steady-state no-wind vertical velocity and no vertical wind component, the time derivative of

the z coordinate, ż, is just equal to V ∗
v , where downward change has a positive sign. Thus, the integral terms in Eq. (3)

can be simplified.

zstart +V ∗
v Tdownwind +V ∗

v Tturn +V ∗
v Tapp = 0 (8)

where Tdownwind represents the time duration required to travel the sum of distances L and Dswitch. Again, recall that

under the sign convention being used here, zstart is a negative number and that V ∗
v and all time durations are positive.

Assuming that the Snowflake’s turn rate is constant, and that the turn will encompass 180° of a circle of known radius

R, the time duration for the turn Tturn is a known constant in terms of R and V ∗
h (see also Ref. 7 Eq. 33). Therefore, this

equation has only two unknowns: Tdownwind and Tapp.

Under the assumption of a constant wind profile, a simple expression for Tdownwind could be written in terms of

unknown value Dswitch. Also using the constant wind profile assumption, Eq. (2) simplified into an equation containing

two unknowns: Dswitch and Tapp; therefore the two linear equations in two unknowns could easily be solved. Under the

assumption of a logarithmic wind profile as in Eq. (7), Tdownwind cannot be replaced by a simple expression containing

Dswitch. Instead, in order to compute Tdownwind assuming that the wind profile is logarithmic, a value of Dswitch must be

6
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assumed, and then the time t0 can be computed. Time t0 is computed using the assumption of constant vertical velocity

from the following simple relation:

t0 =
z0 − zstart

V ∗
v

+ tstart (9)

where altitude z0 had been calculated using the Lambert W function as follows:

z0 =
c

bW
(
− cea/b

b

) (10)

where a, b, and c are constants that can be expressed in terms of known quantities V ∗
h , V ∗

v , α , β , L, zstart, and assumed

quantity Dswitch. See the appendix for the derivation of Eq. (10).

The iteration procedure to calculate Dswitch is as follows:

1. Select an initial guess value for Dswitch

2. Using the initial guess value for Dswitch, calculate z0 using Eq. (10), and Tdownwind from:

Tdownwind =
z0 − zstart

V ∗
v

(11)

3. Using Tdownwind, calculate Tapp using Eq. (8)

Tapp =
−zstart

V ∗
v

−Tturn −Tdownwind (12)

4. Compute z1 using the assumption of constant vertical velocity

z1 = z0 +V ∗
v Tturn (13)

5. Compute D̃ from known quantities:

D̃ = (β −α)Tturn − α
V ∗

v

[
−z0 ln(−z0)− z1 ln(−z1)

]
(14)

See the appendix for the derivation of Eq. (14).

6. Compute Lapp using Tapp using:

Lapp = (V ∗
h −α +β )Tapp +

αe−β/α

V ∗
v

+αTapp ln(TappV ∗
v ) (15)

See the appendix for the derivation of Eq. (15).

7. Compute Dswitch from:

Dswitch = D̃+Lapp (16)

8. Use value of Dswitch computed in step 7 as the next iteration estimate of Dswitch in step 1. Repeat iterations until

differences between subsequent values of Dswitch are below a threshold value.

B. Adaptive Filtering for Parameter Estimation

In Section III.A, the parameters of the logarithmic wind profile, α and β , were treated as known parameters. These

two parameters are estimated from the output of an adaptive filtering algorithm, which is shown in block diagram form

in Fig. 6. In this representation, the logarithmic wind model is interpreted in a discrete-time form with desired signal

d[n] containing the sequential estimates of wind speed from the Snowflake guidance algorithm. These sequential

estimates are obtained using Eq. (6) as described in Section II.B. When converting the logarithmic wind profile model

in Eq. (7) into discrete-time form for the adaptive filtering algorithm, then measurement vector H[n] contains the

natural logarithm of the current altitude measurement z[n]. The estimate of wind speed d̂[n] at any altitude z[n] is given

by the following product:

d̂[n] =
[
ln(−z[n]) 1

]
︸ ︷︷ ︸

H[n]

[
α
β

]
︸︷︷︸
Θ̂[n]

(17)

7

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

. O
F 

A
R

IZ
O

N
A

 o
n 

O
ct

ob
er

 5
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

1-
26

05
 



Θ

Θ̂

H[n]

unknown

v[n]

d[n]

d̂[n]

e[n] = d[n]− d̂[n]

+
+

−
+

Figure 6. Block diagram of Recursive Least Squares adaptive filtering algorithm.

The term on the right side of Eq. (17) can be represented as the product of the measurement matrix H[n] (a row

vector in this case) and an estimated parameter vector Θ̂[n]. Note that the “true” parameter vector Θ[n] remains un-

known. In the adaptive filtering model, the true output (desired signal d[n]) is known; however, the “true” logarithmic

wind profile parameters and the measurement noise signal v[n] that compose the true wind speed are unknown.

The Recursive Least Squares (RLS) adaptive filtering algorithm can be applied to this parameter estimation prob-

lem; various digital signal processing textbooks contain the derivation of this algorithm.10, 11 In summary, this algo-

rithm minimizes the total error given by the following sum of weighted error squares:

Ξ[n] =
n

∑
i=1

λ n−i|e[i]|2 =
n

∑
i=1

λ n−i
∣∣∣d[i]−H[i]Θ̂[n]

∣∣∣2 (18)

where λ is known as the forgetting factor and typically has a value equal to or greater than 0.9.10 Therefore, the few

most recent values of the a posteriori error signal e[n] are the most influential in the calculation of total error Ξ[n].
As each new value of the measurement matrix H[n] and the desired output signal d[n] is obtained, the new values of

the estimated parameters Θ̂[n] are calculated by adding to the previous estimate Θ̂[n− 1] a quantity proportional to

the a priori error value ξ [n]. The a priori error is formed by using the previous parameter estimate values Θ̂[n− 1]
with current measurement matrix H[n] and subtracting the product from the current desired signal value d[n]. The

constant or proportionality in this operation is known as the adaptation gain vector K[n], which depends in turn on the

measurement matrix H[n] and a 2× 2 matrix (for the current problem) known as the inverse correlation matrix P[n].
The Recursive Least Squares adaptive filtering algorithm is summarized as follows:

1. Initialize the inverse correlation matrix P(0) using the identity matrix I and a small positive constant δ .

P(0) = δ I (19)

2. Compute the adaptation gain vector K[n]

K[n] =
λ−1P[n−1]HT [n]

1+λ−1H[n]P[n−1]HT [n]
(20)

3. Compute the a priori error value ξ [n]

ξ [n] = y[n]−H[n]Θ̂[n−1] (21)

4. Update the estimate of the parameters of the wind model Θ̂[n]

Θ̂[n] = Θ̂[n−1]+K[n]ξ [n] (22)

5. Update the value of the inverse correlation matrix P[n]

P[n] = λ−1P[n−1]−λ−1K[n]H[n]P[n−1] (23)

6. Increment discrete counter n, obtain new values of desired signal d[n], and altitude z[n] (which is used in forming

the one-dimensional measurement matrix H[n]) and then repeat starting at step 2.

8
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IV. Algorithm Implementation

Up to this point, a method for Snowflake to use a sequence of altitude and velocity measurements in order to

estimate the parameters of a logarithmic wind profile has been proposed in Section III.B, and a means to use those

parameters in the calculation of decision milestone Dswitch has been described in Section III.A. In the sequel, the in-

corporation of these new methods into the existing code for the Snowflake ADS guidance algorithm will be described,

along with the implications of these changes.

Section II.B listed the two major decision milestones to be computed in flight as transition altitude zstart and

transition distance Dswitch. As also mentioned in that section, of the two decision milestones, Dswitch was the final

and more critical of the two. In the following algorithm, the estimated parameters of the logarithmic wind profile

are applied to the calculation of only Dswitch for the additional reason that the transition altitude zstart is typically at

an altitude above the limit of where the surface layer logarithmic wind profile assumption is considered to be valid

(approximately up to a maximum of 200m).3

The incorporation of the algorithm into the Snowflake ADS code would be as follows:

1. At each execution of the main loop, measure current altitude z[n] and, if on a downwind or upwind segment,

measure Vf or Vr as appropriate.

2. If altitude is below a threshold value, for instance 200m above ground level (AGL), and Snowflake is in phase 4,

use adaptive filter algorithm as described in Section III.B in order to estimate parameters α and β of logarithmic

wind profile. If not yet in phase 4, return to step 1.

3. Use current values of parameters α and β in iterative computation as described in Section III.A to compute

Dswitch.

4. Compare Snowflake’s current x coordinate (as defined in Fig. 4). If x < Dswitch, return to step 1.

5. If x > Dswitch, then begin phase 5 and start final turn to target. Note that the comparison of x to Dswitch is valid

whether Dswitch is negative or positive.

It should be seen in simulation that a Snowflake relying on the logarithmic wind profile should, all other aspects

being equal, begin the final turn towards the target later than a Snowflake relying on the assumption of a constant wind

profile because the logarithmic wind profile should predict smaller values of wind speed near the surface.

V. Simulation Results

The algorithm detailed in Section IV for applying a logarithmic wind model to horizontal wind estimates generated

in flight was first applied to recorded Snowflake telemetry data from previous flight tests. The data set from flight tests

at Yuma Proving Ground, Yuma, Arizona, in October 20081 was chosen for processing first due to the existence

of rawinsonde data concurrent with the Snowflake flights. The recorded Snowflake horizontal wind estimates were

processed using the RLS algorithm in order to determine what the logarithmic wind model parameters α and β would

have been had they been calculated in flight. Because Snowflake’s recorded wind estimates are no longer updated once

the Snowflake commences phase 5 (final turn to target,) the last values of α and β calculated were used to generate

a logarithmic wind profile that was then compared to the rawinsonde data at altitudes corresponding to those of the

Snowflake during final approach. Figure 7 illustrates such a comparison.

In Fig. 7, data is presented from drop number 12 on October 21, 2008 from a test series conducted at Yuma Proving

Ground, Arizona.1 The post-processed calculation of Dswitch indicates that the Snowflake would have commenced the

final turn later than was done using the constant wind assumption, which would have been a correct decision since the

original flown trajectory resulted in overshoot, as is depicted in Fig. 8.

The next phase of simulation was conducted in conjunction with flight tests conducted at Camp Roberts, California,

21 to 24 February, 2011. These trials are described as simulations, because, while the Snowflake was indeed generating

horizontal wind speed estimates in flight and using those to calculate logarithmic wind model parameters α and β ,

the Snowflakes were not using this information to determine a value for Dswitch based on the logarithmic wind profile

assumption. Rather, the final turn decision for the Snowflakes in these trials was based upon the constant wind profile

assumption.

Figure 9 shows the estimated logarithmic wind profile generated in post-flight simulation using the wind estimates

gathered in flight from drop number 6 on February 24, 2011. The value of Dswitch computed using the logarithmic

wind profile is compared to the actual turn start point computed assuming a constant wind profile, and the turn using

the logarithmic wind profile would have occurred later.
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VI. Flight Test Results

The full implementation of the adaptive filtering algorithm as described in Section IV, including the calculation

of Dswitch was subsequently incorporated into the source code for the autopilot installed in the Snowflake ADS. The

systems thus modified were tested in flight after being dropped from an altitude of 762m to 914m (2500 to 3000 ft)

AGL by an Arcturus T-20 unmanned aerial system (UAS) over McMillan Airfield (identifier CA62) at Camp Roberts,

California, in a series of tests during 2 to 4 May, 2011. In order to achieve a good comparison between the logarithmic

wind profile assumption and the constant wind profile assumption, on each flight of the T-20, the two Snowflakes were

dropped, one from underneath each wing, as quickly as the two under-wing release mechanisms could be opened.

Usually, both Snowflakes were dropped within one second of each other.

Figure 10 shows the in-flight wind estimate calculated by the Snowflake from drop number 2 on May 3, 2011,

using the logarithmic wind profile model. As the Snowflake begins phase 5 (final approach turn) and phase 6 (straight

flight to target), the wind profile estimate produced by the final calculated values of α and β is shown along with the

actual wind estimates produced during phase 6. From these two plots, it can be inferred that the logarithmic model

agrees reasonably well with the measured data.

Figure 11 depicts the in-flight estimates made by a Snowflake in flight of the two parameters Lx and Dswitch. Recall

that the first parameter Lx is the current distance from the Snowflake to a position abeam of the target, as defined in

Fig. 4; this parameter is defined as positive when the Snowflake has not yet reached the abeam position, and negative

after the Snowflake has flown past the abeam position. Because Dswitch is defined such that positive values represent a

turn past the abeam position, and negative values indicate a turn prior to the abeam position, the criterion upon which

the Snowflake algorithm commences the final turn is Lx <−Dswitch. Figure 11 shows that once one Snowflake began

calculating Dswitch using the logarithmic wind profile model, its Dswitch estimate went from negative (turn prior to the

target) to positive (turn after abeam the target). The other Snowflake, relying on the constant wind profile model did

begin its final turn prior to the target.

Figures 12 and 13 show flight trajectories of both of these Snowflakes. While the Snowflake that used the constant

wind profile model did land closer to the target, its trajectory was less regular, since it had to enter an overhead spiraling

approach to the target after flying over the target too high due to its early turn. For potential shipboard landing of an

ADS, a predictable, non-spiraling approach trajectory is better.

VII. Conclusion

The simulation and flight test results have provided evidence that the logarithmic model of the surface layer wind

profile is a usable and useful model that can aid proper trajectory planning by an ADS in the terminal approach phase.
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Features of the logarithmic wind model that make it especially applicable to the maritime domain are two-fold. First,

use of the logarithmic wind model has the potential to reduce instances of beginning the final turn early, avoiding an

overhead spiraling approach to the target, and leading to a standard, straight-in approach more conducive to shipboard

landing. Second, the required a priori parameter of the logarithmic wind model, the aerodynamic roughness length, is

a parameter that is more easily estimated at sea than in most terrain on land because it has such a small value over the

open sea.
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Appendix: Derivation of Solutions for Altitude z0 and Distances D̃ and Lapp

Derivation of Solution for Altitude z0

In order to compute z0, start with the fundamental expression for movement in the x direction between times t0
and tstart, and resolve motion into a component that is due to no-wind velocity, and a component due to the wind. This

expression will contain unknown value time t0 instead of the corresponding altitude at that time, z0; however, there

exists a simple variable transformation from time to altitude based on the assumption of constant descent rate.

t0∫
tstart

ẋ dt = L+Dswitch (24)

V ∗
h (t0 − tstart)−

t0∫
tstart

W (z) dt = L+Dswitch (25)

Perform a variable transformation of both terms, converting from time to altitude as the independent variable.

Altitudes corresponding to tstart and t0 are labeled zstart and z0 respectively.

z(t) =V ∗
v (t − tstart)+ zstart (26)

dz =V ∗
v dt (27)

z(t0)≡ z0 =V ∗
v (t0 − tstart)+ zstart ⇒ t0 − tstart =

z0 − zstart

V ∗
v

(28)

V ∗
h

V ∗
v

(z0 − zstart)− 1

V ∗
v

z0∫
zstart

W (z) dz = L+Dswitch (29)

Move known quantity involving zstart to the right side, and substitute in Eq. (7) on page 6 for logarithmic wind

profile.

V ∗
h

V ∗
v

z0 − 1

V ∗
v

z0∫
zstart

α ln(−z)+β dz = L+Dswitch +
V ∗

h

V ∗
v

zstart (30)

Perform variable substitution to account for the fact that altitude is represented as a negative number in the sign

convention in use.

z′ =−z

dz′ =−dz
(31)

V ∗
h

V ∗
v

z0 +
1

V ∗
v

−z0∫
−zstart

α lnz′+β dz′ = L+Dswitch +
V ∗

h

V ∗
v

zstart (32)
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Evaluate the definite integral.

V ∗
h

V ∗
v

z0 +
β

V ∗
v

(−z0 + zstart)+
α
V ∗

v

[
z′ lnz′ − z′

]−z0

−zstart

= L+Dswitch +
V ∗

h

V ∗
v

zstart (33)

Evaluate the limits of integration, and move all known quantities to the right side, assuming Dswitch is a known

quantity.

(
V ∗

h −β
V ∗

v

)
z0 +

α
V ∗

v

[
−z0 ln(−z0)+ z0 + zstart ln(−zstart)− zstart

]
= L+Dswitch +

(
V ∗

h −β
V ∗

v

)
zstart (34)

(
V ∗

h +α −β
V ∗

v

)
z0 − α

V ∗
v

z0 ln(−z0) = L+Dswitch +

(
V ∗

h +α −β
V ∗

v

)
zstart − α

V ∗
v

zstart ln(−zstart) (35)

Equation Eq. (35) is an equation in only one unknown, z0, and has the form

az0 +bz0 ln(−z0) = c (36)

and has a solution in terms of the Lambert W function of:

z0 =
c

bW
(
− cea/b

b

) (37)

where the Lambert W function is defined in the work by Corless et al.12 to be the function that satisfies:

W (z)eW (z) = z (38)

Derivation of Solution for Distance D̃

In order to compute D̃, start with an expression for movement in the x direction between times t0 and t1. The sign

convention established by Slegers and Yakimenko7 is that the distance D̃ is measured in the negative x direction from

point t1. In other words, if point t1 has an x coordinate that is less than that of point t0, then distance D̃ is said to have

a positive value. Put in yet another way, if, during the turn from point t0 to point t1, the wind pushes Snowflake closer

to the target, then D̃ is said to have a positive value; conversely, if the wind pushes Snowflake further away from the

target during the turn, then D̃ is said to have a negative value. Therefore, D̃ has the opposite sign of the change in x
coordinate between times t0 and t1.

D̃ =−
t1∫

t0

ẋ dt (39)

For the next step, it is assumed that the turn trajectory from t0 to t1 is planned in such a way that, if there were no

wind, that point t1 would have the same x coordinate value as point t0. Therefore, any deviation, measured as D̃, is a

result of the wind alone. Noting that the sign convention for wind in Fig. 4 on page 4 is such that positive values of

wind W correspond to negative values of resultant movement in the x direction, or ẋ, Eq. (39) on this page is restated

as

D̃ =

t1∫
t0

W (z) dt (40)

Perform a variable transformation as in Eq. (26) on the preceding page on the integral term, converting from time

to altitude as the independent variable. Altitudes corresponding to t0 and t1 are labeled z0 and z1 respectively.

D̃ =
1

V ∗
v

z1∫
z0

W (z) dz (41)

Substitute in Eq. (7) on page 6 for logarithmic wind profile.

D̃ =
1

V ∗
v

z1∫
z0

α ln(−z)+β dz (42)
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Perform variable substitution as in Eq. (31) on page 14 to account for the fact that altitude is represented as a

negative number in the sign convention in use.

D̃ =− 1

V ∗
v

−z1∫
−z0

α lnz′+β dz′ (43)

Evaluate the definite integral and the limits of integration and group terms.

D̃ =
β

V ∗
v

(z1 − z0)− α
V ∗

v

[
z′ lnz′ − z′

]−z1

−z0

(44)

D̃ =
β

V ∗
v

(z1 − z0)− α
V ∗

v

[
−z1 ln(−z1)+ z1 + z0 ln(−z0)− z0

]
(45)

D̃ =
β

V ∗
v

(z1 − z0)− α
V ∗

v

(z1 − z0)− α
V ∗

v

[
z0 ln(−z0)− z1 ln(−z1)

]
(46)

Altitude is again related to time using Eq. (26) on page 14, yielding the following relations:

z(t1)≡ z1 =V ∗
v (t1 − tstart)+ zstart (47)

z1 − z0 =V ∗
v (t1 − t0)≡V ∗

v Tturn (48)

Using Eq. (48) on the current page, a final expression is obtained that includes values that are known a priori: α ,

β , Tturn, and V ∗
v . This expression also includes altitude values z0 and z1 at the beginning and the end of the turning

maneuver. Once one of these altitude values is determined or estimated, the other is easily found using the known time

for the turning maneuver, Tturn and the assumed constant descent rate V ∗
v .

D̃ = (β −α)Tturn − α
V ∗

v

[
z0 ln(−z0)− z1 ln(−z1)

]
(49)

Derivation for Solution of Distance Lapp

In order to compute distance Lapp, start with the fundamental expression for movement in the x direction between

times t1 and t2, which is the time of landing. The distance Lapp is defined as a positive distance; however, the change

in x coordinate between times t1 and t2 is negative. Therefore, Lapp will have the opposite sign from the integral of ẋ.

Lapp =−1 ·
t2∫

t1

ẋ dt (50)

The motion is then resolved into a component that is due to no-wind velocity, and a component due to the wind.

During this segment of the flight path, the no-wind velocity V ∗
h and motion due to positive values of wind W are both

assumed to be aligned in the opposite direction of positive values of ẋ; therefore a negative sign is inserted into the

integrand.

Lapp =−1 ·
t2∫

t1

−(V ∗
h +W (z)) dt (51)

Next, substitute in Eq. (7) on page 6 for logarithmic wind profile, and substitute in the altitudes corresponding to

t1 and t2 which are labeled z1 and z2 respectively.

Lapp =
1

V ∗
v

z2∫
z1

V ∗
h +W (z) dz (52)

At this point, an additional feature of the wind model must be incorporated. The value of the wind magnitude W (z)
is assumed not to change sign with changing altitude; i.e., the output values of the function W (z) should be either all

positive or all negative over the range of altitude from zstart to the surface. The complication is that at values of altitude

z close to zero, the sign of the natural logarithm function does change sign. Therefore, for this wind model, the value

of the wind magnitude W (z) shall be considered to be zero for values of altitude z close to zero. It can be verified that

for z = −e−β/α , the value of wind magnitude W (z) = α ln(−z)+β = 0; therefore, W (z) = 0 for |z| < |e−β/α |. The
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integral in Eq. (52) can then be separated into two components: one with a non-zero value of W (z) for −e−β/α > z> z1

and one with a zero value for W (z) for 0 > z >−e−β/α . Note that z2 is the touchdown point, so that its altitude is zero.

Lapp =
1

V ∗
v

⎧⎪⎨
⎪⎩

−e−β/α∫
z1

V ∗
h +α ln(−z)+β dz

⎫⎪⎬
⎪⎭+

1

V ∗
v

0∫
−e−β/α

V ∗
h dz (53)

For the both integrals, perform variable substitution as in Eq. (31) on page 14 to account for the fact that altitude

is represented as a negative number in the sign convention in use.

Lapp =
−1

V ∗
v

⎧⎪⎨
⎪⎩

e−β/α∫
−z1

V ∗
h +α lnz′+β dz′

⎫⎪⎬
⎪⎭− 1

V ∗
v

0∫
e−β/α

V ∗
h dz′ (54)

Evaluate the definite integrals and the limits of integration and group terms.

Lapp =
V ∗

h

V ∗
v

(
−e−β/α − z1 + e−β/α

)
− β

V ∗
v

(
e−β/α + z1

)
− α

V ∗
v

[
z′ lnz′ − z′

]e−β/α

−z1

(55)

Lapp =

(−V ∗
h −β
V ∗

v

)
z1 − βe−β/α

V ∗
v

− α
V ∗

v

[
e−β/α lne−β/α − e−β/α + z1 ln(−z1)− z1

]
(56)

Lapp =

(−V ∗
h +α −β

V ∗
v

)
z1 +

αe−β/α

V ∗
v

− α
V ∗

v

[
z1 ln(−z1)

]
(57)

Using the assumption of constant descent rate V ∗
v , the altitude z1 at the beginning of the approach segment is just

the time duration of the approach segment multiplied by the vertical velocity, expressed as a negative number:

z1 =−TappV ∗
v (58)

Substituting Eq. (58) into Eq. (57), a final expression is obtained in terms of values α , β , V ∗
v , and V ∗

h that are known

a priori, and value Tapp that is easily computed using the known value Tturn and an estimated value for Tdownwind.

Lapp = (V ∗
h −α +β )Tapp +

αe−β/α

V ∗
v

+αTapp ln(TappV ∗
v ) (59)
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